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PREFACE TO THE HOBO 1.3 VERSION FOR RAILS 3  
 
It has been a little over a year since we published the first PDF books ñRapid Rails with Hoboò 

and ñHobo at Workò.  We are pleased that there have been over 20,000 downloads since that 

time. 

 

The current ñRapid Rails 3 with Hoboò combines both ñRapid Rails with Hoboò and ñHobo at 

Workò.  We felt that having all of the material in one indexed volume would prove more 

valuable. 

 

There has been such a dramatic change in the structure of Hobo since version 1.0 we really 

should have called it Hobo 3.0!  Each major feature of Hobo can now be used independently and 

has been re-factored to work seamlessly with Rails 3. 

 

Domizio Demichelis did a fantastic job with the new Hobo Setup Wizard as well the heavy 

lifting on almost every new feature in Hobo 1.3.  It has been gratifying to see another extremely 

talented and seasoned contributor following in the footsteps of Tom Locke, James Garlick, 

Bryan Larsen and Matt Jones.   

 

It is also very gratifying to see the self-sustaining Hobo User community and those talented 

Hobo-ists who volunteer their time to answer questions and provide insight.  If you look at the 

member statistics you will see the top five all time posters (at least since we switched to using 

Google Groups in June of 2008) include Kevin Porter, Tom Locke, Matt Jones, Bryan Larsen, 

and Tiago Franco. 

 

At Barquin International, the last year has been a fruitful one for Hobo.  We have four major 

mission-critical applications that have Hobo as a critical component.  We have been fortunate to 

have the skills of Tom Locke and his crew at Artisan to support us, including Bryan Larsen, 

Gustav Paul, and Angus Miller, and our internal Barquin Hoboists Venka Ashtakala and Jack 

Compton.  They have been critical to our success with the National Institute of Food and 

Agriculture (NIFA) Applications Portal (http://portal.nifa.usda.gov) and the Leadership 

Management Dashboard (LMD), as well as other initiatives that will be revealed later this year.  

 

So, please stop by Hobo Central (http://hobocentral.net) and join the growing community of 

developers who are having a great deal of fun while providing their clients with the huge benefits 

of a state-of-the art agile development framework! 

 

 

Owen Dall 

Annapolis, Maryland  

March 2011  

  

http://portal.nifa.usda.gov/
http://hobocentral.net/
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PREFACE TO THE HOBO 1.0 VERSION FOR RAILS 2  
 

What was our goal? 

 

I starting writing this preface almost exactly a year ago, but put it aside while Jeff and I toiled 

over iterations of the book outline.  While building and rebuilding the outline of what we thought 

were the bookôs requirements, we soon realized that it would take much more focus and energy 

than we anticipated completing this project. 

  

Our goal seemed simple enough: 

 

ñCreate a full set of rock-solid instructions and tutorials so that even a novice developer can 

create, revise, and deploy non-trivial data-rich Web 2.0 applications.  The user must have fun 

while learning, and develop the confidence to take the next step of diving in to learn more about 

Hobo, Rails and the elegant and powerful object-oriented language behind these frameworks - 

Ruby.ò 

 

Right. Well, you know how these things go.  OK, so we bit off more than we could chew, at least 

in the timeframe we envisioned.  So instead of three months it took a yearéat least it comes out 

synchronized with the release of Hobo 1.0!   

 

So--we hope we have been at least partially successful.  We have had a few ñbetaò testers of 

early versions that have made it through without serious injury.  More recently it has been 

reports of minor typos and suggested phrasing enhancements.  Letting this simmer for a while 

has been a good thing. 

 

I hope you are grateful that we parsed off the last 200+ pages into a more advanced companion 

book with the title  ñHobo at Workò.   

 
A brief history 

 

The search for a new web development framework began with my frustration with the learning 

curve and the lack of agility I experienced with the current open source frameworks at the time.  

A major client had stipulated that we were to use a totally open source technology stack.  In the 

early 2000ôs that meant to us Linux, JBoss, Hibernate, MySQL, and Java web frameworks such 

as Struts.  We eventually moved ñupò to using Java Server Faces (JSF).  The learning curve was 

steep for our new programmers who were learning on the job.   

 

This was particularly frustrating to me as I had experience with the ñagileò tools of the 1980ôs 

and 1990ôs, which included Revelation and PowerBuilder, client-server technologies that didnôt 

manage to survive into the Internet age.  With Revelation we could build an application 

prototype that included complex business logic while sitting in front of a client.  We didnôt call it 

Agile Development.  We just did it.  We built dozens of mission-critical applications and many 

shrink-wrapped tools.  Things were good.  Then they werenôt.  The dinosaurs didnôt survive the 

meteor that hit with the World Wide Web. 
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So, as the development team lead at one of our major sites as well as the chief systems architect 

of our small company, I thought it was my duty to start looking for another solution in earnest.  

 

It was in the middle of 2006 that I had a long discussion with Venka Ashtakala about this new 

quest.  (Venka and I had survived two unsuccessful framework searches together starting in 

1998.  The first was as Alpha testers of the PowerBuilder web converter.  Our goal was to 

migrate a very successful client-server budgeting system used by a large number state and local 

governments to the web.  That experiment was a disaster at the time, so we dropped it.)   

 

A few days after our initial discussion he emailed me about a relatively new framework called 

ñRuby on Railsò that had gotten some good press.  He heard of a few guys who vouched for it, 

but couldnôt find any ñmission criticalò apps we could use as references.  I was intrigued.  I did a 

search and found the first edition of ñAgile Development with Railsò, and tried it out. 

 

My first simple application worked, but I have to admit it looked very plain and uninspiring to 

me.  I was a designer and architect, and didnôt want to code HTML and JavaScript.  I didnôt want 

to go backward.  ñI am too old for this!ò was my mantra at the time. I couldnôt understand why 

the framework didnôt take care of basic things I had been using for over 20 years.  Among other 

things, I was looking for a data-driven navigation system, user authentication, and a decent user 

interface baked in.  

 

I dropped the search for almost a year.  I stumbled on a link on one of the major Oracle sites 

about interesting add-ons to Rails, which led to a post by the renowned Ruby evangelist, Peter 

Cooper, in January of 2007.  Here are two short quotes. 
 

ñYou may have thought Ruby on Rails was enough to get Web applications developed quickly, 

but enter Hobo. Hobo makes the process of creating Web applications and prototypes even 

quicker. For example, out of the box, with no lines of code written, you get a dummy app with a 

user signup, login, and authentication system. 

 
éThere's quite a lot to Hobo, so you'll want to go through its comprehensive official site and 

watch the Hobo screen cast to get a real feel for it where a classified ads app is created within 

minutes.ò 

 

I watched the screen cast three times.  I was blown away.  I had finally found someone who got 

it.  It was Tom Locke.   

 

Following an open source project was something totally new to me.  I owned my own software 

business for a dozen years.  We used proprietary tools that had hefty license fees for each 

installation.  I couldnôt see the source code.  Oracle and Microsoft werenôt giving me the code to 

their database servers, applications servers, or WYSIWYG design tools.  I paid support and 

expected THEM to fix the problems we invariably discovered building our vertical applications 

in the 1980ôs and 1990ôs.  

 

The closest I came to the open source world was being a senior member of the Revelation 

Roundtable, a board of key developers and integrators for the Revelation and Advanced 
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Revelation development tools.  A few of our products were shrink-wrapped add-ons for other 

developers. This gave us clout for recommending priorities for new development and the ability 

to get the president on the phone if one of my very high profile customers was having an issue. 

 

So posting to a forum and waiting for an answer to my (probably) stupid question didnôt come 

easy to me.  This was the thing (I thought) for generation X, not an aging survivor of decades of 

software wars.   

 

It was a welcome and pleasant surprise to find supportive, generous, and incredibly talented 

people willing to help.  Even Tom Locke would answer my questions, patiently.  Later I was 

lucky enough to spend time with Tom in person on a number of occasions, which increased my 

respect for his vision and capabilities. 

 

In Early 2008 an opportunity arose at one of our major clients, The National Institute for Food 

and Agriculture (Formerly CSREES), to migrate a legacy app to the web.  I invited the CIO, 

Michel Desbois (a forward-looking open source advocate) to experience a demo of building an 

application using Hobo.  My position at NIFA was Chief Systems Architect of the Barquin team, 

not one of our senior developers. So Michel was intrigued that I was going to sit with him 

without a coder coaching. 

 

That demo led to a small ñproof of conceptò task to build a Topic Classification system for 

agriculture research projects using Hobo and Oracle as a back end.  Michel took a risk and 

started the ball rolling for us with Hobo.   

 

As this project moved forward, and additional Barquin team members became interested in 

learning, it became more and more urgent to have a solid resource for training not only 

developers, but also our requirements analysts and designers.  We were building wireframes 

using software (e.g., Axure) that built great documentation.  It even generated HTML pages so 

you could simulate the page flow of an application.   

 

Unfortunately these became throwaway artifacts, as there was no way of generating a database 

driven application.  What we needed was a prototyping tool designers could use and then pass on 

to developers.  Hobo appeared to be the best solution for both prototyping and mission-critical 

web development.  Here is what I reported in May of 2008 about Barquin Internationalôs 

decision to provide some seed money to Hobo: 
 

"This is the first time in over a decade I have been excited about the potential in a new 

development framework," explains Owen Dall, Chief Systems Architect for Barquin 

International, "Although Hobo is already a brilliant and significant enhancement to Rails, 

we are looking forward to the great leap forward we know is comingéò  

 

More recently we have two significant development efforts underway using Hobo that we will 

put in production this year.  The new Leadership and Management Dashboard (LMD) led by Joe 

Barbano, the NIFA Reporting Portal, and the REEport (Research, Education and Economics 

Reporting) project lifecycle reporting system under the direction of John Mingee.  Dennis 
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Unglesbee, Director of the NIFA Applications Division, has had overall lead responsibility for 

all of these endeavors. 

 

Anyone who thinks government cannot be agile should come on by and have coffee with the 

NIFA application development project managers.  NIFA has become an innovative ñskunk 

worksò that, IMHO, should become a model for public/private collaboration. 

 

 

A Challenge 

 

How fast could you build an application with the following set of requirements using your 

current development tool, and have it running, without touching the database engine? 

 Books have been disappearing from your teamôs bookshelves.  You have been 
asked to quickly develop a web application that will maintain this library and 
always know who has what copy of which book. 

 Each book title may have any number of copies.  Only the administrator, who 
will be the first one to log in, can enter or edit book titles and details about each 
copy. 

 There will be an automatic signup and login capability accessible from the 
home page that allows each member of your team to join in, check a book out, 
or find out who has it so you can track him or her down in the lunch room.  

 There is a built-in text search facility that will allow you to search by book name 
or description. 

 Basic Application documentation is generated for you automatically so you can 
show your team leader what is behind the curtain. 

(Now write your estimates down before reading the rest of this page) 

 

OK. Timeôs up.  By the time you consolidated your estimates you would already 
be up and running with this application using Hobo.  

 

 

Owen Dall 

Annapolis, Maryland  

February, 2010  
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CHAPTER 1 ï INTRODUCTION 
 
What is Hobo? 
 

By Tom Locke 

 

Hobo is a software framework that radically reduces the effort required to develop database-

driven, interactive web sites and web-based applications. Strictly speaking itôs more of a ñhalf-

frameworkò ð Hobo builds on the amazingly successful Ruby on Rails and thatôs where much 

of the functionality comes from. The original motivation for the Hobo project can be summed up 

pretty succinctly with a single sentiment: ñDo I really have to code all this stuff up again?". 

 

In other words Hobo is about not re-inventing the wheel. In software-engineer-speak, we call that 

code reuse. If you mention that term in a room full of experienced programmers youôll probably 

find yourself the recipient of various frowns and sighs; you might even get laughed at. It all 

sounds so simple - if youôve done it before just go dig out that code and use it again. The trouble 

is, the thing you want to do this time is just a bit different, here and there, from what you did last 

time. That innocuous sounding ñjust a bit differentò turns out to be a twelve-headed beast that 

eats up 150% of your budget and stomps all over your deadline. Re-use, it turns out, is a very 

tough problem. Real programmers know this. Real programmers code it up from scratch. 

 

Except they donôt. Ask any programmer to list the existing software technologies they drew upon 

to create their Amazing New Thing and you had better have a lot of time to spare. Modern 

programming languages ship with huge class libraries, we rely on databases that have 

unthinkable amounts of engineering time invested in them, and our web browsers have been 

growing more and more sophisticated for years. Nowadays we also draw upon very sophisticated 

online services, for example web based mapping and geo-location, and we add features to our 

products that would otherwise have been far beyond our reach. 

 

So it turns out the quest for re-use has been a great success after allðwe just have to change our 

perspective slightly, and look at the infrastructure our application is built on rather than the 

application code itself. This is probably because our attitude to infrastructure is differentðyou 

like it or lump it. If your mapping service doesnôt provide a certain feature, you just do without. 

You canôt dream of coding up your own mapping service, and some maps is better than no maps.  

 

Weôve traded flexibility for reach, and boy is it a good trade. 

 

Programmers get to stand on the shoulders of giants. Small teams with relatively tiny budgets 

can now successfully take on projects that would have been unthinkable a decade ago. How far 

can this trend continue? Can team sizes be reduced to one? Can timelines be measured in days or 

weeks instead of months and years? The answer is yes, if  you are willing to trade flexibility for 

reach. 

 



CHAPTER 1 - INTRODUCTION 
__________________________________________________________________________________ 

___________________________________________________________________________________ 
ñRapid Rails 3 with Hoboò                             BETA-6:  2011-05-18                                                                       Page 8  
© 2011 Barquin International  

 

In part, this is what Hobo is about. If youôre prepared for your app to sit firmly inside the box of 

Hoboôs ñstandard database appò, you can be up and running with startlingly little effort. So little, 

in fact, that you can just about squeeze by without even knowing how to program. But thatôs 

only one part of Hobo. The other part comes from the fact that nobody likes to be boxed in. What 

if I am a programmer, or I have access to programmers? What if I donôt mind spending more 

time on this project? 

  

We would like this ñflexibility for reachò tradeoff to be a bit more fluid. Can I buy back some 

flexibility by adding more programming skills and more time? In the past this has been a huge 

problem. Lots of products have made it incredibly easy to create a simple database app, but 

adding flexibility has been an all-or-nothing proposition. You could either stick with the out-of-

the-box application, or jump off the ñscripting extensionsò cliff, at which point things get awfully 

similar to coding the app from scratch. 

 

This, we believe, is where Hobo is a real step forward. Hobo is all about choosing the balance 

between flexibility and reach that works for your particular project. You can start with the out-

of-the box solution and have something up and running in your first afternoon. You can then 

identify the things youôd like to tweak and decide if you want to invest programming effort in 

them. You can do this, bit by bit, on any aspect of your application, from tiny touches to the 

user-interface, all the way up to full-blown custom features. 

 

In the long run, and weôre very much still on the journey, we hope you will never again have to 

say ñDo I really have to code all this up again?ò, because youôll only ever be coding the things 

that are unique to this particular project. To be honest thatôs probably a bit of a utopian dream, 

and some readers will probably be scoffing at this pointðyouôve heard it all before. But if we 

can make some progress, any progress in that direction, thatôs got to be good, right? Well we 

think weôve made a ton of progress already, and thereôs plenty more to come! 

 

Background 

 

A brief look at the history leading up to Hobo might be helpful to put things in context. Weôll 

start back in ancient times ð 2004. At that time the web development scene was hugely 

dominated by Java with its ñenterpriseò frameworks like EJB, Struts and Hibernate. It would be 

easy, at this point, to launch into a lengthy rant about over-engineered technology that was 

designed by committee and is painful to program with. But that has all been done before. Suffice 

it to say that many programmers felt that they were spending way too much time writing 

repetitive ñboilerplateò code and the dreaded XML configuration files, instead of focusing on the 

really creative stuff that was unique to their project. Not fun and definitely not efficient. 

 

One fellow managed to voice his concerns much more loudly than anyone else, by showing a 

better way. In 2004 David Heinemeier Hansson released a different kind of framework for 

building web apps, using a then little-known language called Ruby. A video was released in 

which Hansson created a working database-driven Weblog application from scratch in less than 

15 minutes. That video was impressive enough to rapidly circulate the globe, and before anyone 

really even knew what it was, the Ruby on Rails framework was famous. 
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Like most technologies that grow rapidly on a wave of hype, Rails (as it is known for short) was 

often dismissed as a passing fad. Five years later the record shows otherwise. Rails is now 

supported by all of the major software companies and powers many household-name websites. 

 

So what was, and is, so special about Ruby on Rails? There are a thousand tiny answers to that 

question, but they all pretty much come down to one overarching attitude. Rails is, to quote its 

creator, opinionated software. The basic idea is very simple: instead of starting with a blank slate 

and requiring the programmer to specify every little detail, Rails starts with a strong set of 

opinions about how things should work, conventions which ñjust workò 95% of the time. 

ñConvention over Configurationò is the mantra. If you find yourself in the 5% case where these 

conventions donôt fit, you can usually code your way out of trouble with a bit of extra effort. For 

the other 95% Rails just saved you a ton of boring, repetitive work. 

 

In the previous section we talked about trading flexibility for reach. Convention over 

configuration is pretty much the same deal: donôt require the programmer to make every little 

choice; make some assumptions and move swiftly on. The thinking behind Hobo is very much 

inspired by Rails. Weôre finding out just how far the idea of convention over configuration can 

be pushed. For my part, the experience of learning Rails was a real eye-opener, but I 

immediately wanted more. 

 

I found that certain aspects of Rails development were a real joy. The ñconventionsòðthe stuff 

that Rails did for youðwere so strong that you were literally just saying what you wanted, and 

Rails would just make it happen. We call this ñdeclarative programmingò. Instead of spelling out 

the details of a process that would achieve the desired result, you just declare what you want, and 

the framework makes it happen: ñwhatò not ñhowò. 

 

The trouble was that Rails achieved these heights in some areas, but not all. In particular, when it 

came to building the user interface to your application, you found yourself having to spell things 

out the long way. 

 

It turned out this was very much a conscious decision in the design of Ruby on Rails. David 

Heinemeier Hansson had seen too many projects bitten by what he saw as the ñmirageò of high-

level components: 

 

I worked in a J2EE shop for seven months that tried to pursue the component pipe dream 

for community tools with chats, user management, forums, calendars. The whole 

shebang. And I saw how poorly it adapted to different needs of the particular projects. 

 

On the surface, the dream of components sounds great and cursory overviews of new 

projects also appear to be ña perfect fitò. But they never are. Reuse is hard. 

Parameterized reuse is even harder. And in the end, youôre left with all the complexity of 

a Swiss army knife that does everything for no one at great cost and pain. 
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I must say I find it easy to agree with this perspective, and many projects did seem, in hindsight, 

to have been chasing a mirage. But itôs also a hugely dissatisfying position. Surely we donôt have 

to resign ourselves to re-inventing the wheel forever? So while the incredibly talented team 

behind Rails has been making the foundations stronger, weôve been trying to find out how high 

we can build on top of those foundations. Rather than a problem, we see a question ð why do 

these ideas work so well in some parts of Rails but not others? What new ideas do we need to be 

able to take convention over configuration and declarative programming to higher and higher 

levels? Over the last couple of years weôve come up with some pretty interesting answers to 

those questions. 

 

In fact one answer seems to be standing out as the key. Itôs been hinted at already, but it will 

become clearer in the next section when we compare Hobo to some other seemingly similar 

projects. 

 

The Difference 

 

There are a number of projects out there that bear an external resemblance to Hobo. To name a 

few, in the Rails world we have Active Scaffold and Streamlined, and the Python language has 

Django, a web framework with some similar features. 

 

There is some genuine overlap between these projects and Hobo. All of them (including Hobo) 

can be used to create so called ñadmin interfacesò. That is, they are very good at providing a 

straightforward user-interface for creating, editing and deleting records in our various database 

tables. The idea is that the site administrator, who has a good understanding of how everything 

works, does not need a custom crafted user-interface in order to perform all manner of behind-

the-scenes maintenance tasks. A simple example might be editing the price of a product in a 

store. In other words, the admin interface is a known quantity: they are all largely the same. 

 

Active Scaffold, Streamlined, Django and Hobo can all provide working admin sites like these 

with very little or even no programming effort. This is extremely useful, but Hobo goes much 

further. The big difference is that the benefits Hobo provides apply to the whole application, not 

just the admin interface, and this difference comes from Hoboôs approach to customization. 

 

Broadly speaking, these ñadmin site builderò projects provide you a very complete and useful 

out-of-the-box solution. There will be a great number of options that can be tweaked and 

changed, but these will only refine rather than reinvent the end result. Once youôve seen one of 

these admin-sites, youôve pretty much seen them all. Thatôs exactly why these tools are used for 

admin sites - it generally just doesnôt matter if your admin site is very alike any other. The same 

is far from true for the user-facing pieces of your applicationðthose need to be carefully crafted 

to suit the needs of your users.  

 

Hobo has a very different approach. Instead of providing options, Hobo provides a powerful 

parameterization mechanism that lets you reach in and completely replace any piece of the 

generated user-interface, from the tiny to the large. 
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This difference leads to something very significant: it gets you out of making a difficult all-or-

nothing decision. An admin site builder does one thing well, but stops there. For every piece of 

your site you need to decide: admin interface or custom code? With Hobo you can start off using 

the out-of-the-box UI as a rough prototype, and then gradually replace as much or as little as you 

need in order to get the exact user experience you are after. 

 

Once again we find ourselves back at the original idea: making a tradeoff between flexibility and 

reach. The crucial difference with Hobo, is that you get to make this trade-off in a very fine-

grained way. Instead of all-or-nothing decisions (admin-site-builder vs. custom-code), you make 

a stream of tiny decisions. Should I stick with Hoboôs automatically generated form? Sidebar? 

Button? How long would it take me to replace that with something better? Is it worth it? 

 

There is a wide spectrum of possibilities, ranging from a complete out-of-the-box solution at one 

end to a fully tailored application at the other. Hobo lets you pick any point on this spectrum 

according to whatever makes sense right now. Not only that but you donôt have to pick a point 

for the app as a whole. You get to make this decision for each page, and even each small piece of 

each page. 

 

The previous section posed the question: ñhow can the ideas of declarative programming be 

taken to higher and higher levels?ò. We mentioned before that one particular answer to this 

question has stood out as crucial: it is the approach we have taken to customization. Itôs not what 

your components can do, itôs how they can be changed that matters. This makes senseðsoftware 

development is a creative activity. Developers need to take what youôre giving them and do 

something new with it. 

 

It is this difficulty of customization that lies at the heart of concerns with high-level components: 

David Heinemeier Hansson again: 

 

éhigh-level components are a mirage: By the time they become interesting, their fitting 

will require more work than creating something from scratch. 

 

The typical story goes like this: you need to build something that ñsurely someone must have 

done before?ò; you find a likely candidate - maybe an open-source plugin or an application that 

you think you can integrate; then as you start the work of adjusting it to your needs it slowly 

becomes apparent that itôs going to be far harder than you had anticipated. Eventually you end up 

wishing you had built the thing yourself in the first place. 

 

To the optimistic however, a problem is just an opportunity waiting to be taken. Weôre hitting a 

limit on the size of the components we can buildðtoo big and the effort to tailor them makes it 

counterproductive. Turn that around and you get this: if you can find a way to make 

customization easier, then you can build bigger components. If itôs the ñfittingò thatôs the 

problem, letôs make them easier to fit! Thatôs exactly what weôre doing. 
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The Future 
 

Bigger library  

 

Obviously the whole point in discovering the secrets of how to build high-level components, is 

that you want to build some high level components! In other words there are two distinct aspects 

to the Hobo project: getting the underlying technology right, and then building some cool stuff 

with it. Hobo 1.3 will ship with a decent library of useful ñbuilding blocksò to get your app up 

and running quickly, but thereôs so much more weôd like to see. This is where the magic of open-

source needs to come into play. The better Hobo gets, the more developers will want to jump on 

board, and the bigger the library will grow. 

 

Although the underlying framework is the most technically challenging part of the project, in the 

long run thereôs much more work to be done in the libraries. And writing the code is just part of 

the story. All these contributions will need to be documented and catalogued too.  

 

Weôve started putting the infrastructure in place with ñThe Hobo Cookbookò website 

(http://cookbook.hobocentral.net) - a central home for both the ñofficialò and user-contributed 

documentation. 

 

Performance improvements 

 

It would be remiss not to mention that all these wonderful productivity gains do come at a cost - 

a Hobo application does have an extra performance overhead compared to a ñnormalò Rails 

application. Experience has shown itôs not really a big problem - many people are using Hobo to 

prototype, or to create a very niche application for a small audience. In these cases the 

performance overhead just doesnôt matter. If you do have a more serious application that may 

need to scale, there are well known techniques to apply, such as prudent use of caching. 

 

The argument is pretty much the same as that told by early Rails coders to their Java based 

critics. Itôs much better to save a ton of development time, even if it costs you some of your raw 

performance. The time saved can be used to work on performance improvements in the 

architecture of the app. You typically end up with an app thatôs actually faster than something 

built in a lower-level, ñfasterò language. 

 

Another way to look at itðit was about four or five years ago that Rails was getting a lot of 

pushback about performance. In those four or five years, Mooreôs Law has made our servers 

somewhere between five and ten times faster. If Rails was fast enough in 2005 (it was), Hobo is 

certainly fast enough today. 

 

Having said all that, itôs always nice to give people more performance out-of-the-box and 

postpone the day that they have to resort to app-specific efforts. Just as Rails has focused a lot on 

performance in the last couple of years, this is definitely an area that we will focus on in the 

future. 

 

http://cookbook.hobocentral.net/
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Less magic 

 

One of the most common criticisms leveled against Hobo is that it is ñtoo magicò. This tends to 

come from very experienced developers who like to know exactly how everything is working. 

Because Hobo gives you so much out-of-the-box, itôs inevitable that youôll be scratching your 

head a bit about where it all comes from in the early days. Fortunately this is mostly just a matter 

of the learning curve. Once youôve oriented yourself, itôs pretty easy to understand where the 

various features come from, and hence where to look when you need to customize. 

 

As Hobo has developed, weôve definitely learnt how important it is to make things as clear and 

transparent as we can. The changes from Hobo 0.7 to 0.8 removed a great deal of hard to 

understand ñmagicalò code. This is definitely a trend that will continue. Weôre very confident 

that future versions will be able to do even more for you, while at the same time being easier to 

understand. Itôs a challengeðwe like challenges! 

 

Even higher level 

 

One of the really interesting things weôve learnt through releasing Hobo as open source, has been 

that it has a very strong appeal to beginners. It is very common for a post to the ñhobo usersò 

discussion group to start ñI am new to web programmingò or ñThis is my first attempt to create a 

web appò. It seems that, with Hobo, people can see that a finished result is within their reach. 

That is a powerful motivator. 

 

Now that weôve seen that appeal, itôs really interesting to find out how far we can push it. Weôve 

already seen simple Hobo applications created by people that donôt really know computer 

programming at all. Right now these people are really rather limited, but perhaps they can go 

further. 

 

Hobo has ended up serving two very different audiences: experienced programmers looking for 

higher productivity, and beginners looking to achieve things they otherwise couldnôt. Trying to 

serve both audiences might sound like a mistake, but in fact it captures what Hobo is all about. 

Our challenge is to allow the programmer to choose his or her own position on a continuous 

spectrum from ñincredibly easyò to ñperfectly customizedò. 

 

Hopefully this introduction has whetted your appetite and youôre keen to roll up your sleeves and 

find out how it all works. While this section has been a bit on the philosophical side, the rest of 

the book is eminently practical. From now on weôll dispense with all the highbrow pontificating 

and teach you how to make stuff. Enjoy! 
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Fundamentals 

 
The Hobo developers have taken the DRY (Donôt Repeat Yourself) paradigm to a new level by 

identifying repetitive architectural patterns in data-driven web sites and particularly within Rails 

applications.  

  

 Rapid implementation of dynamic AJAX interfaces in your application with no extra 
programming. Switchable themes. Customize and tweak your application structure 
and layout to meet any design goals. 

 

 Powerful mark-up language, DRYML, combines rapid development with ultimate 
design flexibility.  

 

 

The DRY paradigm is all about finding the right level of abstraction for the building blocks of an 

application in order to reduce cookie-cutter repetitive programming.  

 

Rails starts with a Model-View-Controller (MVC) architecture built with Ruby code, using the 

metaprogramming power that Ruby provides.  

 

Hobo takes this paradigm further and it does it in two directions. It provides rapid prototyping 

with modules that provide an integrated user login and permissions system, automated page 

generation, automated routing, built-in style sheets, and an automated database migration and 

synchronization system. Hobo also provides a powerful markup language called DRYML that 

provides an almost limitless method for building custom tags at ever-higher levels of abstraction. 

 

Sometimes these patterns are at a very high level such as the need for a user login capability and 

sometimes they are at a lower level such the requirement to grab a set of records for display. 

 

The Hobo framework philosophy is that many of the features of a data-driven site should be able 

to be declared and need no other coding, at least for the first set of iterations. 

Letôs take a database query as an example. The developers of Rails realized that many queries 

had similar structures and therefore there should be no need to code complex SQL queries. Rails 

implements find methods to deal with this challenge. Butðin the view templateðyou still need 

to write the code to loop through the records when you need to display them. 

 

The Hobo view is that this is a ubiquitous repetitive pattern that should be addressed. So Hobo 

lets you just declare that you want to display a collection of records in a single command. 

 

As we have mentioned many times before, Hobo provides a new language called DRYML 

(Donôt Repeat Yourself Markup Language) to develop menus, views, forms, and page 

navigation. The components of DRYML, as you would expect, are tags. Hobo comes with a 

library of predefined DRYML tags called the Rapid Tag Library. This library is used to render 

the default menus, pages, and forms you have used in the tutorials.   
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Levels of Abstraction  

 

As we discussed above, finding the right level of abstraction in implementing coding constructs 

is the key to programming productivity and application maintainability. But anyone who has ever 

coded knows that programming is a messy business. Sometimes it is just easier to code at a low 

level of abstraction. This is the dominant way of developing applications today. It is simpler not 

to create reusable components or snippets because something always seems to need changing. 

You think you will waste more time fixing your components than just starting over. 

 

The approach that Rails takes, and Hobo even more so, is to have code that lets multiple levels of 

abstractions coexist in the code. This is potentially the best of both approaches.  

 

Build higher and higher levels of abstraction in your tool set but maintain the ability to code at a 

detail level for development flexibility.  

 

Wherever possible, Hobo provides additional capabilities over Rails for declaring what you want 

rather than forcing you to write procedural code. It is therefore important to understand what is 

going on procedurally behind the scenes in both Rails and Hobo so you know what to do.  

 

In this chapter we will emphasize which component--model, view or controller--is doing what, 

and when it is doing it. We will also emphasize what the various Hobo constructs are doing and 

how within the architecture of Rails. 

 

We are going to go through the Hobo approach at a couple of levels but first we will list them 

and give a brief introduction. 

 

Now we are going to approach the major topics at a shallow level first and then circle back and 

go in deeper after we get a few things out of the way first. 

 
Rails and Hobo 
 

Hobo is a set of Rails plug-ins, which means that Hobo adds additional custom code to Rails, and 

coexists with Rails. So, essentially a Hobo application is a Rails application with additional 

capabilities. However, these additional capabilities are substantial, and can be conceptualized 

into two categories: 

  

1. Operational (ñRun Timeò) Enhancements  

2. Developer Tool Enhancements 

 

Operational Enhancements. Take a look at the data flow for a typical operating application 

built with a Model-View-Controller (MVC) framework: 
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Figure 1: Data flow for a typical Application using a MVC framework 

 
Now letôs look at how Rails and Hobo fit into the MVC framework: 

 

  
Figure 2: Data flow for a Rails application 
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Figure 3: Data flow for a Hobo application 

Here are a few talking points: 

 

 The Hobo Model Controller takes the place of the Action Controller in Rails. 

 The Hobo Model Controller has access to information from both Hobo Permissions and 

Hobo Lifecycles that allow it to decide what should be displayed and for whom. 

 Hobo Rapid pages are rendered using DRYML, which is passed to the DRYML 

ñprocessorò that translates more declarative DRYML into standard Rails eRB (embedded 

Ruby) that is then rendered with Action View in Rails. 
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Hobo Enhancement Summary 
 

Fields 

A big difference between Hobo and Rails is that in Hobo fields are declared in the model, 

whereas in Rails they are declared in the migrations.  In our opinion it is more intuitive and DRY 

to maintain all of the model code in one place, creating or changing the database design by 

editing the model, letting Hobo build the migration code necessary to make any required 

changes.   You can look in one place to see everything about a model.  You donôt need to jump 

to the schema.rb  file. 

 

The Hobo ñresourceò generator creates models, controllers, and views: 

 
> hobo generate r esource  [parameters]  

 

Any changes to field definitions or associations in the model can be propagated throughout the 

application with the Hobo ñmigrationò generator: 

 
> hobo generate migration  [parameters]  

 

There is no need to edit the migration file. The migration generator handles this for you. 

 

If you only need to create a model without other resources, use the Hobo model generator: 

 
> hobo generate model  [parameters]  

 

Indexes 

This is one of the newest additions to Hobo thanks to Matt Jones.  This feature provides for 

automatic field generation for the foreign keys of related models, and an easy-to-use declarative 

syntax to specified single and multi-part keys with a model definition. 

 

Validations 

As we have discussed elsewhere in the book, Hobo provides some useful in-line shortcuts for the 

simplest validations that Rails does not provide.  See in red below: 

 
Fields do  

  name :string, :required, :unique, :length => 32  

end  

 

Use standard rails validations outside the fieldsédo block. 

This works the same as in Rails so we will not add anything new at this point. 
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Views 

Views take the most time to develop in any application and Hobo provides more tools here than 

in the other two modules to meet that challenge. In fact, it provides an entire language to use to 

develop view templates (a Rails web page). 

 

Hobo views are developed entirely differently than in Rails. Once you define your models and 

controllers, Hobo is capable of automatically generating an entire set of views on the fly. This 

means that at the beginning of your development process you do not have to code a view 

template at all. Hobo automatically creates them whenever the user requests that data be 

rendered. 

 
DRYML Tags  - Hobo constructs view templates using Hoboôs mark-up language, called Donôt 

Repeat Yourself Markup Language. The tags are reusable components that perform specific 

processes defined in Ruby.  

 

You build DRYML tags using a definition language and you use the tags to build data-driven 

view templates in an XML-like syntax. You can create your own tags and build tags from other 

tags. Hobo comes with its own library of fundamental tags called the Rapid Library. 

 

For those of you with a Rails background, you can think of these as similar to Rails "helpers", 

but they are used with an easier XML syntax rather than with [Ruby embedded in the templates.] 

 
Rapid Tag Library . This library is a set of tags that deal with all aspects of view template 

specification. It includes tags for links, forms, input controls, navigation, logic and much more. 

They are DRYML tags in that they are defined with the DRYML definition language. Many 

rapid tags call other Rapid tags implicitly. For example, you may never see a Rapid <input> 

called explicitly in the auto-generated tags described below.  

 
Rapid Generator.  This generator is a real time generator as opposed to the code generators we 

usually talk about in Rails development. Rapid creates a set of auto-generated tags that are 

defined by model fields and model relationships. Rapid uses these auto-generated tags to render 

individual view templates. 
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CHAPTER 2 ï INSTALLATION  
 

Note: This Book is for Hobo version 1.3 which is only compatible with Rails version 3.   If 

you are using Rails 2, please use the previously published book, ñRapid Rails with Hobo.ò 

 

Introductory Concepts and Comments  
 

To encourage the widest audience possible, the following instructions are tailored for Windows, 

which is still the most commonly used operating system in the enterprise.  It has been our 

experience that Mac and Linux users can translate much more easily to Windows vernacular than 

Windows users to Mac OS X or Linux.  

Although we include detailed instructions for configuring MySQL and Oracle databases with 

Hobo, we encourage you to start the tutorials using the lightweight and self-configuring database 

engine, SQLite3, which is the default engine used by Hobo and Rails when in development 

mode. This allows you to focus on learning Hobo, not configuring a database.   

Most books and online tutorials on Ruby and Rails are tailored to Mac users, and pay lip service 

to Windows, assuming the reader is already facile with web development tools and uses the 

MacBook Pro as the ñweapon of choiceò. This book also assumes that many of you are trying out 

Hobo, Ruby, and Rails for the first time and that a large percentage will also be using either 

Windows XP, Vista, or Windows 7 on a day-to-day basis.  We donôt want that minor factor to 

limit  your development enjoyment.   Mac and Linux users may also easily read this book, as we 

have provided the necessary references for installation instructions in these environments. 

So--get your favorite web browser fired up, have a good cup of coffee handy, and follow the 

instructions below.  
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Installing Ruby, Rails and Hobo  
 

 If you already have Ruby and Rails version 3 installed, you can skip to step #3. 

 If you have a Mac with OS X Snow Leopard, Ruby 1.8.7 and Rails 2.3.5 are pre-

installed. You can also skip to step #3 

 If you are using a PC with Linux, see this link for installing Ruby and Rails on Ubuntu 

and Debian Linux, and then skip to step #3: 

   http://wiki.rubyonrails.org/getting-started/installation/linux-ubuntu 

 If you are using a PC with Windows XP or Windows 7, and are new to Ruby and Rails, 

Start with Step #1 below: 

Step 1. Download the ñRails Installerò Kit from http://railsinstaller.org: 

 
 

Figure 4: Download Site for the Rails Installer 

 

Step 2. Double-click on the file r ailsinstaller - 1.0.4 .exe  ( as of February 14, 2011) to 

run the installer.  

http://wiki.rubyonrails.org/getting-started/installation/linux-ubuntu
http://railsinstaller.org/
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The following will be installed for you through the visual wizard: 
 

 Ruby 1.8.7-p330 

 Rails 3.0.3 

 Git 1.7.3.1 

 SQLite 3.7.3 

 DevKit 

 

(Again, these versions will change over time.) 

 

 
Figure 5: Rails Installer Setup Wizard 

 

 

Pressing the ñNextò button will start the installation. You will be prompted at each step to 

provide configuration information. 

 

The first configuration you will be prompted for is an installation directory.  A default one is 

provided to you, but in this tutorial we chose the option to install all in the folder: 

 

 
C: \ Rails3  

http://www.ruby-lang.org/
http://rubyonrails.org/
http://git-scm.com/
http://www.sqlite.org/
https://github.com/oneclick/rubyinstaller/wiki/Development-Kit
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Figure 6: Choose the Installation Directory 

 

 
 

After the installation is complete, you will see a new menu option called ñRailsInstallerò and 

four sub-menus similar to the following:  
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If you select the sub-menu option ñCommand Prompt with Ruby and Railsò you will see a 

command window that appears as follows: 

 

 
 

Note that a default ñSitesò folder was created for you, and that there is even a sample Rails 3 

application included: 

 

 
Figure 7: Rails Installer Sample Application Folder 

 

 

Selecting the Interactive Ruby sub-menu brings up a console similar to the following: 
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For more information, please check out the following link: 

 

http://www.ruby-lang.org/en/documentation/quickstart/ 

 

 

Selecting the RubyGems Documentation Server sub-menu option will start a web server on 

port 8808 that provides hyperlinked information about each gem you have installed: 

 

 

 

 
 

 

For more information, please check out the following link: 

 

http://docs.rubygems.org/ 

http://www.ruby-lang.org/en/documentation/quickstart/
http://docs.rubygems.org/
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Click on the ñCommand Prompt with Ruby and Railsò and type in the following command: 

 
C: \ Sites> gem env  

 

 

The ñgem envò (gem environment) provides information that will later be useful for debugging.   

 

 

 
 

 

Now type the ñgem listò command: 

 
C: \ Sites> gem list  

 

The ñgem listò command provides information about which ruby gems (modules) are installed 

and what versions are available. 
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Figure 8: List of Ruby Gems installed by the Rails Installer 

 

 

Now test to see the SQLite3 is available.  From the command line type ñsqlite3ò: 

 

 
Figure 9: Testing SQLite3 

 

For a nice introduction to the use of SQLite3, access the following link: 

 

http://www.sqlite.org/quickstart.html 

http://www.sqlite.org/quickstart.html
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Note that the Rails Installer comes with a sample application in the Sites/sample   directory: 

 

 
Figure 10: The Sample Rails 3 app included by Rails Installer 

  

 

  

Step 3. Install Hobo.   
 

Type the following command at the command prompt: 

  
C: \ Sites > gem install hobo  - v 1.3.0 .pre2 6 -- pre  

           

 
 

 
Note : In the screen shots captured here we used a recent pre-release version of Hobo.  
Notice we were required to use the ñðpreò command option to install it. 
 
When Hobo 1.3.0 is officially released, the installation command will be: 

  
C: \ Sites> gem install hobo - v 1.3.0  

 

 

Check your installation by using the ñgem listò command to show all Ruby gems that have been 

installed:  

  
C: \ Sites>  gem list    
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Figure 11: Sample console output from the "gem list" command after installing Hobo 

 

Note:  In the example above, 3.0.4 was installed by Hobo 1.3.0, as Rails 3.0.4 was defined as 

a dependency. This may differ over time. 

 

If you find the need to start completely fresh, select the Uninstall RailsInstaller sub-menu 

option.  

 

If you did not use the RailsInstaller package, you will need to install the Sqllite3 Ruby gem 

manually using the command line ñgem install SQLite3ò 
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Step 4. Choose and configure a text editor (optional) 
 

You can work through the tutorials in this book using Textpad or your favorite editor. However, 

For years TextMate (http://macromates.com/) for the Mac has been the most popular light-

weight editor for Ruby and Rails, and offers many productivity features.  There is an inexpensive 

ñcloneò for Windows called ñEò that is very good facsimile of TextMate. You can download a 

30-day evaluation version from http://www.e-texteditor.com/: 

 

 

 

Also take a look at two popular full Integrated Development environments you might find useful: 

 

http://www.aptana.com/products/radrails 

http://netbeans.org/features/ruby/index.html 

 

Now you are ready to start using Hobo with the default database engine for Rails and Hoboð

SQLite. 

Skip to Chapter 3 (Introductory Tutorials) unless you prefer to use MySQL or Oracle.   

Instructions for installation of these database engines are next.

http://macromates.com/
http://www.e-texteditor.com/
http://www.aptana.com/products/radrails
http://netbeans.org/features/ruby/index.html
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Using MySQL with Hobo 
 

Step 1: Download and install MySQL  

For Mac OS X user, please see the following URL: 

http://dev.mysql.com/doc/mysql-macosx-excerpt/5.0/en/mac-os-x-installation.html 

 For Linux users: 

http://dev.mysql.com/doc/refman/5.0/en/linux-rpm.html 

For Windows users: 

http://dev.mysql.com/downloads/mysql/#downloads 

 

 

Although the Community Server is free, you will need to create an account before you 

download.  After creating an account, you will be directed to the download page: 

 

Figure 13: Download site for MySQL 

http://dev.mysql.com/doc/mysql-macosx-excerpt/5.0/en/mac-os-x-installation.html
http://dev.mysql.com/doc/refman/5.0/en/linux-rpm.html
http://dev.mysql.com/downloads/mysql/#downloads
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Click on one of the mirror sites to begin the download. Then click the ñRunò button when 

prompted to begin the installation: 

 

 

Choose the ñCustomò option when prompted: 

 

Figure 15: Choose the ñCustomò setup type 

Figure 14: Using the downloaded .msi file to install MySQL on Windows 
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Next choose the locations for the server code and data files.  Note the default location in 

Windows is:  

C: \ Program Files \ MySQL\ MySQL Server 5.5 \  

 

We suggest a directory path that is more succinct: 

 

Figure 16: Specify the destination folder "C: \MySQL"  for the server software 
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Specify the location of the data files used by MySQL databases: 

 

 

Figure 17: Specify the destination folder "C:\MySQL\data"  to hold MySQL data 

 

Click ñOKò to continue: 

 

 
 

 

Then Click ñNextò to launch the MySQL Instance Configuration Wizard: 
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Figure 18: The MySQL Instance Configuration Wizard 

 

Now click ñFinishò: 

 

The next step is to choose instance configuration option.  We recommend choosing the 

ñStandard Configurationò option. 
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Click ñNextò to obtain further configuration options. Select both ñInstall As Windows Serviceò 

and ñInclude Bin Directory in Windows PATHò: 

 

To make the application creation process for MySQL similar to using SQLite, un-click the 

default checkbox for ñModify Security Settings.ò (This will remove the need to provide the 

MySQL ñrootò user password when using the Hobo setup wizard: 
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Click ñNextò to continue. A status window similar to the following will be displayed: 

 

Click  ñFinishò to complete the installation. 
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You should now see a new ñMySQLò menu item in, from which you can launch the MySQL 

Command Line Client: 

 

  

The Command Line Client will appear similar to the following:  
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Because we opted to use the default MySQL security settings in our installation (no password 

requirement for the ñrootò user),  simply press [Enter] when prompted for a password to access 

the MySQL command prompt: 
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Step 2: Install the Ruby Gem for MySQL 5.5 

The next step is to install the following Ruby gem for connecting to MySQL 5.5: 

C: \ Sites \ tutorials> gem install mysql2 - v 0.2.7 --  ' -- with - mysql -

l ib=" C; \ MySQL\ include"'  

If you installed MySQL in a different location you may have to adjust the previous command to 

reflect the appropriate location in your system. 

You may run into the issue in Windows systems with having the ñlibmysql.dllò file in a path that 

the mysql2  Ruby gem  can access: 
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 You will find this DLL in the following MySQL directory: 

 

Copy this file and place it in the Ruby ñbinò directory: 
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Step 3: Generate a Hobo MySQL Application from the Command Line 

Now you can generate a Hobo MySQL app using the following command: 

C: \ Sites \ tutorials>  hobo new one_table  -- setup ïd mysql  

 

This will create the ñone_tableò application and run the migrations necessary for the default 

ñuserò Hobo user model. 

 

Now edit the database.yml  file to see what was created automatically:  

 

 

Figure 19: The automatically created database.yml file 

 

Notice it is pre-filled with the proper parameter structure for MySQL.    


