

CONTENTS

CONTENTS .. i

LIST OF FIGURES .. v

AUTHORS .. xii

CONTRIBUTORS ... xiii

PREFACE TO THE HOBO 1.3 VERSION FOR RAILS 3 ... 1

PREFACE TO THE HOBO 1.0 VERSION FOR RAILS 2 ... 2

SECTION 1: INTRODUCTION AND INSTALLATION ... 6

CHAPTER 1 ς INTRODUCTION .. 7

What is Hobo? ... 7
Fundamentals .. 14
Rails and Hobo .. 15
Hobo Enhancement Summary .. 18

CHAPTER 2 ς INSTALLATION .. 20

Introductory Concepts and Comments .. 20
Installing Ruby, Rails and Hobo .. 21
Using MySQL with Hobo .. 31
Using Oracle with Hobo ... 44

SECTION 2: TUTORIALS .. 54

CHAPTER 3 - INTRODUCTOR TUTORIALS ... 55

Introductory Concepts and Comments .. 56
Tutorial 1 ɀ Directories and Generators ... 57
Tutorial 2 ɀ Changing Field Names ... 72
Tutorial 3 ɀ Field Validation .. 78
Tutorial 4 ɀ Permissions ... 86
Tutorial 5 ɀ Controllers .. 93
Tutorial 6 ɀ Navigation Tabs ... 103
Tutorial 7 ɀ Model Relationships: Part 1 .. 106
Tutorial 8 ɀ Model Relationships: Part II .. 118

CHAPTER 4 ς INTERMEDIATE TUTORIALS ... 129

Introductory Concepts and Comments .. 130
Tutorial 9 ɀ Editing Auto-Generated Tags .. 132
Tutorial 10 ɀ DRYML I: A First Look at DRYML .. 148
Tutorial 11 ɀ DRYML II: Creating Tags from Tags ... 155
Tutorial 12 ɀ Rapid, DRYML and Record Collections ... 164
Tutorial 13 ɀ Listing Data in Table Form .. 178

Tutorial 14 ɀ Working with the Show Page Tag .. 184
Tutorial 15 ɀ New and Edit Pages with The Form Tag .. 193
Tutorial 16 ɀ The <a> Hyperlink Tag ... 201

CHAPTER 5 ς ADVANCED TUTORIALS ... 205

Introductory Concepts and Comments .. 206
Tutorial 17 ɀ The Agile Project Manager .. 207
Tutorial 18 ɀ Using CKEditor (Rich Text) with Hobo ... 258
Tutorial 19 ɀ Using FusionCharts with Hobo .. 262
Tutorial 20 ɀ Adding User Comments to Models ... 273
Tutorial 21 ɀ Replicating the Look and Feel of a Site ... 281
Tutorial 22 - #ÒÅÁÔÉÎÇ Á Ȱ,ÏÏË ÁÎÄ &ÅÅÌȱ 0ÌÕÇÉÎ ÆÏÒ (ÏÂÏ .. 305
Tutorial 23 ɀ Using Hobo Lifecycles for Workflow ... 309
Tutorial 24 ɀ Creating an Administration Sub-Site... 316
Tutorial 25 ɀ Using Hobo Database Index Generation .. 319

CHAPTER 6 ς DEPLOYING YOUR APPLICATIONS ... 322

Introductory Concepts and Comments .. 323
Tutorial 26 ɀ Installing and Using Git .. 324
Tutorial 27 ɀ Rapid Deployment with Heroku ... 334

SECTION 3: HOBO UNDER THE HOOD .. 348

CHAPTER 7 ς HOBO GENERATORS ... 349

Changes from Hobo 1.0 to Hobo 1.3 for Rails 3 .. 349

CHAPTER 8 ς THE HOBO PERMISSIONS SYSTEM .. 362

Introduction ... 362
Defining permissions .. 363
Change tracking .. 364
Permissions and associations ... 370
The Permission API ... 372
Permissions vs. validations .. 375
View helpers .. 377

CHAPTER 9 - HOBO CONTROLLERS AND ROUTING ... 378

Introduction ... 378
Owner actions .. 379
Adding extra actions ... 380
Changing action behavior ... 381
Writing an action from scratch ... 382
The default actions .. 385
Owner actions .. 386
Autocompleters .. 388
Further Customization ... 389
Drag and drop reordering ... 389

CHAPTER 10 ς HOBO LIFECYCLES ... 391

Introduction ... 391
Key concepts .. 396
Defining a lifecycle ... 397
Defining states ... 399
Defining creators .. 399
Defining transitions ... 400
Repeated transition names .. 402
Validations .. 404
Controller actions and routes .. 404
Transitions .. 407
Keys and secure links ... 409

CHAPTER 11 - HOBO VIEW HINTS AND LOCALES 412

Introduction ... 412
Internationalization (I18n) .. 412
Child relationships ... 414
Inline Booleans ... 415
Locale (I18n) Friendly Tags ... 416

CHAPTER 12 - HOBO SCOPES ... 431

Simple Scopes .. 431
Boolean Scopes ... 431
Date Scopes .. 431
Lifecyle Scopes .. 431
Key Scopes .. 431
Static Scopes ... 431
Association Scopes .. 432
Scoping Associations .. 432
Chaining ... 432
Simple Scopes .. 433
Boolean scopes .. 434
Date scopes ... 434
Lifecycle scopes .. 435
Key scopes .. 435
Association Scopes .. 436
Scoping Associations .. 436
Chaining ... 437

CHAPTER 13 ς THE HOBO DRYML GUIDE ... 438

What is DRYML? ... 438
Simple page templates and ERb ... 439
Where are the layouts? .. 440
Defining simple tags .. 440
Parameters ... 441
Changing Parameter Names .. 443
Multiple Parameters ... 443
Default Parameter Content... 444

The Default Parameter ... 445
The Implicit Context .. 446
Field chains ... 449
Tag attributes .. 449
Flag attributes ... 451
Merging Attributes .. 451
Merging selected attributes ... 452
Repetition .. 454
Even/odd classes ... 455
Using the implicit context ... 456
Pseudo parameters - before , after , append , prepend , and replace 458
Nested parameters .. 461
Customizing and extending tags .. 464
Aliasing tags ... 469
Polymorphic tags ... 469
Wrapping content .. 472
Local variables and scoped variables. .. 474
Taglibs .. 476
Divergences from XML and HTML ... 476

CHAPTER 14 ς THE HOBO RAPID TAG LIBRARY .. 479

Rapid Pages .. 514
Rapid Plus ... 517
Rapid Summary .. 519
Rapid Support .. 526
Rapid User Pages .. 528

INDEX ... 531

 v

LIST OF FIGURES

Figure 1: Data flow for a typical Application using a MVC framework 16
Figure 2: Data flow for a Rails application ... 16

Figure 3: Data flow for a Hobo application .. 17
Figure 4: Download Site for the Rails Installer .. 21
Figure 5: Rails Installer Setup Wizard .. 22
Figure 6: Choose the Installation Directory .. 23
Figure 7: Rails Installer Sample Application Folder .. 24

Figure 8: List of Ruby Gems installed by the Rails Installer .. 27

Figure 9: Testing SQLite3 .. 27

Figure 10: The Sample Rails 3 app included by Rails Installer .. 28
Figure 11: Sample console output from the "gem list" command after installing Hobo 29
Figure 12: Site location for the SQLite DLL .. 30
Figure 13: Download site for MySQL .. 31

Figure 15: Choose the ñCustomò setup type ... 32
Figure 14: Using the downloaded .msi file to install MySQL on Windows................................. 32

Figure 16: Specify the destination folder "C:\MySQL" for the server software 33
Figure 17: Specify the destination folder "C:\MySQL\data" to hold MySQL data 34
Figure 18: The MySQL Instance Configuration Wizard .. 35

Figure 19: The automatically created database.yml file ... 42
Figure 20: Console output after installing Oracle gems for Ruby and Rails 44

Figure 21: The generated database.yml file for Oracle ... 45
Figure 22: Oracle database install download site ... 46

Figure 23: Running the Oracle XE installation... 47
Figure 24: Specifying the database passwords ... 47
Figure 25: Launch the Database home page ... 48

Figure 26: Log is as SYS to configure your database ... 48
Figure 27: Creating a schema/user to use with Hobo ... 49

Figure 28: The tnsnames.ora file created during installation .. 49
Figure 29: Log into Oracle to view the created table .. 50
Figure 30: Access the Oracle Object Browser .. 50

Figure 31: Review the User table from within Oracle .. 51
Figure 32: Review the Indexes view for Users ... 51

Figure 33: Review the Constraints view for User ... 52
Figure 34: The default User model created by Hobo .. 62

Figure 35: Contents of the first Hobo migration file .. 63
Figure 36: Contents of the "schema.rb" file after the first migration ... 63
Figure 37: Drop down selector for the active user .. 64
Figure 38: Location of the Rapid templates .. 65
Figure 39: Folder location for Models and Views .. 66

Figure 40: Migration file changes ... 67
Figure 41: Contacts tab on "My First App" .. 68

Figure 42: New Contact page for "My First App" .. 69

 vi

Figure 43: Remove field from contact model ... 70
Figure 44: Default config/locales/app.en.yml File ... 73
Figure 45: app.en.yml File with Fields Renamed ... 74
Figure 46: View of fields relabeled using the Hobo i18n module .. 75

Figure 47: Adding help text using the Hobo i18n "attribute_help" method 75
Figure 48: Contact entry page with ViewHints enabled ... 76
Figure 49: CSS definitions for the input text fields .. 77
Figure 50: Modified entry in "application.css" to shorten text prompts 77
Figure 51: Page view of validating presence of name .. 79

Figure 52: Page view of double validation error .. 79
Figure 53: Adding ñvalidates_numericality_ofò validation .. 80
Figure 54: Page view of triggering the "validates_numericality_of" error 81

Figure 55: Page view of uniqueness validation error .. 82
Figure 56: Page view of triggering a range validation error ... 83
Figure 57: Page view of validation of text length error .. 83

Figure 58: Page view of ñvalidates_acceptance_ofò error .. 84
Figure 59: Welcome to One Table in the Permissions tutorial ... 87

Figure 60: Recipes tab .. 88
Figure 61: Page view of created recipes ... 89
Figure 62: Table of Hobo permission methods... 90

Figure 63: Table of Hobo "acting_user" options .. 90
Figure 64: Page view of a Recipe ... 92

Figure 65: Making the Recipes tab disappear ... 95
Figure 67: How Hobo finds the default "name" attribute for a model .. 97

Figure 66: Error message ñThe page you were looking for could not be foundò 97
Figure 68: Creating your own custom "name" attribute ... 98

Figure 69: Page view of the custom name attribute .. 98
Figure 70: Viewing the edit URL ... 99
Figure 71: "Unknown action" error page .. 100

Figure 72: Hobo Controller action summary .. 102
Figure 73: Customizing the name of a tab .. 104

Figure 74: Removing the default Home tab .. 105
Figure 75: Changing the Application Name ... 107

Figure 76: Using "enum_string" to create a drop-down list of Countries 108
Figure 77: Index page for Countries ... 114
Figure 78: Selecting a Country for a Recipe ... 114

Figure 79: Active link on Country name in the Recipe show page .. 115
Figure 80: The Country show page accessed from the Recipe show page 116
Figure 81: Only an Administrator is provided the Country Edit link ... 117
Figure 82: The Categories tab on the Four Table app .. 122

Figure 83: The Index page for Categories .. 122
Figure 84: "Category Assignments" on the Recipe show page .. 123
Figure 85: Assignment multiple Categories to a Recipe .. 123
Figure 86: Edit page view of a Recipe with multiple Categories assigned 124
Figure 87: Using the Hobo ñchildrenò declaration to enhance the view of related records 126
Figure 88: Show page for a Category before using ViewHints .. 126

 vii

Figure 89: Category page view after adding the ViewHints "children :recipes" declaration 127
Figure 90: Folder view of \taglibs\auto\rapid ... 131
Figure 92: Folder view of the rapid DRYML files ... 133
Figure 91: Front page view of the Four Table application ... 133

Figure 93: Hobo Page Action Tag definitions .. 135

Figure 94: The Hobo Rapid <index - page> tag definition in the pages.dryml file 136

Figure 95: The Recipes Index page .. 136
Figure 96 : View of the taglibs/auto/rapid folder... 137
Figure 97: Adding the definition of index-page into the application.dryml file 138
Figure 98: Page view of "My Recipes" after modifying the <index-page> tag 141

Figure 99: Adding the <index-page/> tag to index.dryml .. 142
Figure 100: How a change to the <index-page> tag affects a collection 144

Figure 101: Changing the tab order for the main navigation menus .. 146

Figure 102: Changing the application name with the app-name tag .. 147
Figure 103: The \views\front\index.dryml file after the first modification 149
Figure 104: The Home page with the first set of custom messages.. 149
Figure 105: Passing a parameter to the tag <messages> you created ... 150

Figure 106: How the passed parameter displays on the page ... 151
Figure 107: Passing three parameters to your <messsages> tag ... 151

Figure 108: Page display using your custom <bd-it> tag ... 153
Figure 109: Calling <span:> explicitly within to your <bd-it> tag.. 153
Figure 110: Adding the custom <more-messages> tag to front\index.dryml 156

Figure 111: Page rendering with <more-messages> ... 156
Figure 112: Extending the tag <messagex> in application.dryml .. 158

Figure 113: Using the extended <messagex> tag ... 159
Figure 114: Page view of the next additions to <messagex> ... 160

Figure 115: Page view of the <more-messages> tag usage .. 161
Figure 116: Page view of overriding the default message 0. .. 161

Figure 117: More parameter magic ... 163
Figure 118: The Four Tables application as we left it .. 165
Figure 119: Creating the /views/recipes/index.dryml file ... 165

Figure 120: page view of using a blank "<collection:></collection:>" tag 168
Figure 121: How the <collection> tag iterates .. 169
Figure 122: Using the <a> hyperlink tag within a collection ... 170

Figure 123: Specifying what <collection> tag will display .. 171
Figure 124: Changing the display style within <collection> .. 172

Figure 125: Changing the implicit context within <collection> ... 173
Figure 126: Creating comma-delimited multi-valued lists in a <collection> 174
Figure 127: Adding the count of values in the <card> tag ... 175
Figure 128: Using "if---else" within a tag to display a custom message 177
Figure 129: Using <table-plus> to display a columnar list ... 179

Figure 130: Adding a "Categories Count" to <table-plus ... 180
Figure 131: Adding a comma-delimited list within a <table-plus> column 181
Figure 132: adding a search facility to <table-plus> using Hoboôs apply_scopes method 182
Figure 133: Found Recipes searching for "French" .. 183
Figure 134: The Recipe show page before modification .. 185

 viii

Figure 135: Recipe show page after removing three critical lines of code 186
Figure 136: Using the <field=list> tag to choose which fields to display 186
Figure 137: Using the <collection-heading:> tag ... 187
Figure 138: Using the <body-label:> parameter tag ... 188

Figure 139: Using the <country-label:> parameter to change the label on the page 190
Figure 140: A new show page for Recipes ... 191
Figure 141: Page view of using the replace attribute in the <content-body:> parameter tag 192
Figure 142: Default Hobo form rendering .. 195
Figure 143: Modifying the <field-list> tag to remove fields on a page 196

Figure 144: First step using the <input> tag ... 198
Figure 145: Adding the label for the filed "Title" ... 199
Figure 146: Adding the rest of the input fields ... 200

Figure 147: Generating an active link to a list of Countries ... 202
Figure 148: The Countries index page activated by your custom link 202
Figure 149: Constructing a custom link to the "New Country" page ... 203

Figure 150: Page view of custom <show-page> tag ... 204
Figure 151: Adding "has_many :requirements" to the Project class .. 209

Figure 152: Adding "belongs_to :project" and "has_many :tasks" to the Requirement model .. 210
Figure 153: Adding the ñbelongs_toò and ñhas_manyò declarations to the Task model 210
Figure 154: Adding the two "belongs_to" definitions to the TaskAssignment model 211

Figure 155: Adding the "has_many" declarations to the User model ... 211
Figure 156: First Hobo migration for Projects .. 212

Figure 157: View of indexes created by the migration ... 212
Figure 158: The default Home page for the Projects application ... 214

Figure 159: The Projects index page .. 215
Figure 160: New Requirement page ... 215

Figure 161: Index view for Requirements .. 216
Figure 162: New Task page .. 216
Figure 163: Index view for Tasks ... 217

Figure 164: Part 1 of the Application Summary page .. 218
Figure 165: Part 2 of the Application Summary page .. 219

Figure 166: Part 3 of the Application Summary page .. 220
Figure 167: Part 4 of the Application Summary page .. 221

Figure 168: Effect of removing the "index" action from the Tasks controller 222
Figure 169: View of "No Requirements to display" message .. 223
Figure 170: The "New Requirement" link now appears ... 223

Figure 171: View of the "New Requirement" page .. 224
Figure 172: View of the in-line "Add a Task" form ... 225
Figure 173: Requirement page after modifying controller definitions 227
Figure 174: Defining available roles using ñenum_stringò .. 228

Figure 175: Modifying the "create_permitted" method to the User model 229
Figure 176: Users Controller with "auto actions :all: ... 229
Figure 177: The Users tab is now active ... 229
Figure 178: The Edit User page with the new Role field ... 230
Figure 179: Adding the use of Role in Permissions ... 231
Figure 180: Modifying the ñupdate_permitted?ò method in the Requirement model 233

 ix

Figure 181: Assigning multiple Users to a Task in the Edit Task page 234
Figure 182: The New Project page using ñProjectHintsò ... 235
Figure 183: The default application name and welcome message ... 236
Figure 184: Changing the application name in "config/application.rb" 237

Figure 185: Modifying "\front\index.dryml" .. 238
Figure 186: Home page modified by changing "/front/index.dryml" ... 239
Figure 187: Extending the card tag for Task in "application.dryml" .. 240
Figure 188: Viewing assigned users on a the Task card ... 241
Figure 189: Listing the contents for the "app\views\taglibs\auto\rapid" folder 242

Figure 191: The auto-generated "show-page" tag for User in "pages.drymlò 243
Figure 190: contents of the pages.dryml file .. 243
Figure 192: View of the enhanced User "show-page" .. 245

Figure 193: The Users tab showing all assignments ... 246
Figure 194: Using the Hobo ñ<table-plus>ò feature to enhance the Requirements listing 248
Figure 196: Using a search within the Requirements listing .. 249

Figure 195: Enhancing the <table-plus> listing .. 249
Figure 197: The Edit Requirement form with selectable status codes.. 251

Figure 198: Creating an AJAX status update for Requirements... 252
Figure 199: Task model with "due_date" and a validation for the date 257
Figure 200: Error message from trying to enter a date earlier than today 257

Figure 201: CKEditor source folder listing .. 258
Figure 202: Using the ":html" field option to trigger rich-text editing 260

Figure 203: Sample Hobo form using CKEditor .. 261
Figure 204: Registration form to request FusionCharts .. 262

Figure 205: Download page for FusionCharts .. 263
Figure 206: Target location for the FusionCharts SWF files .. 263

Figure 207: Adding the required <extend tag=ôpageô> definition in application.dryml 264
Figure 208: Screen shot of sample recipe data for the tutorial ... 265
Figure 209: Enhancements to RecipesController to provide data to FusionCharts 266

Figure 210: Content of recipes/index.dryml used to render FusionCharts 268
Figure 211: Screen shot of rendered FusionCharts bar chart .. 269

Figure 212: The recipe/index.dryml file to render a FusionCharts pie chart and bar chart 271
Figure 213: Screen shot of the rendered FusionCharts bar and pie charts 272

Figure 214: Editing the application name for the Comments Recipe ... 273
Figure 215: Home page for the Comments Recipe ... 274
Figure 216: Adding Body and Game to Comments.. 274

Figure 217: Permissions for the Comment model .. 275
Figure 218: The auto_actions for the comments_controller .. 275
Figure 219: Adding comments to the Game model ... 276
Figure 220: Posting comments about a game ... 277

Figure 221: Comments' Recipe with support for courts ... 278
Figure 222: Adding courts to comments ... 278
Figure 223: Adding comments to courts ... 278
Figure 224: Modifying auto_actions for the comments_controller (allow court) 279
Figure 225: Hiding court and game in the comment's form ... 279
Figure 226: View of the in-line "Add a Comment" form ... 280

 x

Figure 227: Posting comments about a court .. 280
Figure 228: Screen shot of the nifa.usda.gov home page ... 281
Figure 229: The NIFA banner image .. 282
Figure 230: The NIFA photo image.. 283

Figure 231: The NIFA main navigation bar ... 283
Figure 232: NIFA navigation panels... 283
Figure 233: NIFA footer navigation ... 283
Figure 234: The NIFA Demo default home page ... 285
Figure 235: Using the "app-name" tag to change the default application name 286

Figure 236: Using Firebug to locate the background color .. 287
Figure 237: Using Firebug to find the images used by Hobo for the default background 287
Figure 238: Adding the new background color to "application.css" .. 288

Figure 239: First pass at modifying "application.dryml" .. 289
Figure 240: The two images used in NIFA's top banner .. 289
Figure 241: How to reference the banner gif in "application.css" .. 291

Figure 242: View of the NIFA Demo login page ... 292
Figure 243: The Navigation Panel before refactoring .. 292

Figure 244: View of our first pass at the main navigation menu .. 293
Figure 245: Still need more to fix the top navigation menu... .. 294
Figure 246: The fixed NIFA man navigation bar ... 295

Figure 247: View of the default three-column formatting .. 296
Figure 248: View of the left panel contact without styling .. 298

Figure 249: View of the left panel content with correct styling ... 299
Figure 250: View of the right panel content with styling ... 301

Figure 251: View of the main content panel ... 302
Figure 252: NIFA Demo with final footer styling .. 304

Figure 253: Batch file with commands to create the plugin folders and content 305
Figure 254: Guest view Recipes - All recipes are in state "Not Published" 312
Figure 255: Recipes ready to Publish. .. 313

Figure 256: Omelet recipe after being placed in the "Published" state 313
Figure 257: Recipe index with buttons for "Publish" and "Not Publish" 314

Figure 258: Guest user can only see the published Recipe ... 314
Figure 259: Generator console output for creating an admin sub-site .. 316

Figure 260: View of the Admin folder contents ... 317
Figure 261: View of the Admin Sub-Site ... 318
Figure 262: Hobo source code on github.com .. 324

Figure 263: Hobo gems are also available on github.com .. 325
Figure 264: Installing Git for Mac OSX ... 326
Figure 265: Download the mysysgit installer for Windows ... 326
Figure 266: Running the Git Setup Wizard .. 327

Figure 267: Git setup options .. 327
Figure 268: Select the OpenSSH option ... 328
Figure 269: Select to option to run Git from the Windows command prompt 328
Figure 270: Select Windows style line endings .. 329
Figure 271: Running the PuTTY Key Generator install ... 330
Figure 272: Generate SSH key pairs for use with Git .. 330

 xi

Figure 273: The default file names generated by PuTTYGen .. 331
Figure 274: Locating your USERPROFILE setting ... 332
Figure 275: View of "no ssh public key found" error ... 332
Figure 276: Naming your SSH key pairs .. 333

Figure 277: The original Heroku beta invitation .. 334
Figure 278: Using the free "Blossom" database hosting option on Heroku.com 335
Figure 279: Sign Up for a Heroku account ... 336
Figure 280: Heroku notification that "Confirmation email sent" ... 337
Figure 281: Locating your "Invitation to Heroku" email .. 337

Figure 282: The "Welcome to Heroku" signup page .. 338
Figure 283: The "Account Created" message at Heroku.com .. 338
Figure 284: Installing the Heroku Ruby gem ... 339

Figure 285: Console output from the "heroku create" command ... 340
Figure 286: Using heroku git push ... 341
Figure 287: Telling Heroku where to find your application's gems ... 341

Figure 288: Adding your ñ.gemsò config file to your git repository .. 342
Figure 289: Migrating your database schema to Heroku.com .. 343

Figure 290: Testing your Heroku app ... 343
Figure 291: Running the "Four Table" app on Heroku.com .. 344
Figure 292: Installing the Taps gem to upload data to Heroku.com ... 344

Figure 293: Using "heroku db:push" to push data to your app on Heroku.com 345
Figure 294: The "Four Table" app on Heroku.com with data .. 345

Figure 295: Add a recipe on Heroku.com ... 346
Figure 296: Pull changed data from Heroku.com to your local app ... 346

Figure 297: Hobo Rapid action related tags ... 359
Figure 298: Hobo precedence logic for action tags .. 361

Figure 299: Defining the Friendship model .. 393
Figure 300: The contents of the "summary.dryml" file .. 520
Figure 301: Sample view of the first section of an application summary page 520

 xii

AUTHORS

Owen Dall

Owen Dall has been Chief Systems Architect for Barquin International for the past seven years. During

that time he has led a data warehousing, business intelligence, and web systems practice and has

become an evangelist for agile development methodologies. His search for replacements to Java web

frameworks led him to Hobo open source environment for Ruby on Rails (RoR) in late 2007. In his 25+

years software development experience, he has authored several software packages used by diverse

clients in both the private and public sectors.

Jeff Lapides

Jeff Lapides was educated as a physicist and has worked as a CIO and senior operating executive in a

large public corporation. For most of the past decade, he consulted with private industry in information

technology, business management and science. He is currently engaged at a nationally ranked research

university where he develops relationships between research scientists in engineering, information

technology, physical and life sciences and foundations and corporations.

Tom Locke

Tom is the founder and original developer of the Hobo project. He is also co-founder of Artisan

Technology, software and web development company exploring commercial opportunities around Hobo

and other open-source projects. Prior to founding Artisan Technology Tom has been a freelance software

developer for over ten years, and has been experimenting with innovative and agile approaches to web

development since as early as 1996.

Bryan Larsen

Bryan sold his first video game in 1987 and has never stopped. Joining the ranks of fathers this year has

slowed him down, but he's still having fun. He lives in Ottawa with his wife and daughter. Bryan is a key

contributor to Hobo and has nursed it along to a mature 1.0 version.

Domizio Demichelis

Domizio is a free-lance application designer and developer who played the lead role in migrating

from Hobo 1.0 for Rails 2 to Hobo 1.3 for Rails 3. He also created the new Hobo Generation

Wizard.

Venka Ashtakala

Venka is a Software Engineering Consultant with over 10 years experience in the Information

Technology industry. His expertise lies in the fields of rapid development of data driven web solutions,

search, reporting and data warehousing solutions for both structured and non structured data and

implementing the latest in open source technologies. He has consulted on a variety of projects in both the

Private and Public sectors, most recently with the National Institute of Food and Agriculture.

xiii

CONTRIBUTORS

Tola Awofolu

Tola is a software engineer with over seven years of experience with standalone Java and Java

web development frameworks. Sheôs been working with Ruby on Rails and Hobo for over a year

as part of the Barquin International team at USDA on two major projects. She is a protégé of

Tom Locke and Bryan Larsen and has become Barquin Internationalôs leading Ruby developer.

Tiago Franco

Tiago Franco is a Project and Technical Manager working in Software development for more than ten

years, currently working for the Aerospace & Defense market. He's been working with Ruby on Rails

since 2006, and adopted Hobo in 2008 to re-design Cavortify.com.

Marcelo Giorgi

Marcelo is a software engineer with over seven years of experience with standalone Java and Java web

development frameworks. Heôs been working with Ruby on Rails for more than two years, and had the

opportunity to work with (and make some contributions to) Hobo during last year.

Matt Jones

Matt is a software engineer who can remember when Real Web Programmers wrote NPH CGI scripts to

be loaded up in Mosaic. When heôs not building Hobo applications, heôs often found hunting Rails bugs

or helping new users on rails-talk and hobo-users. He also has the dubious honor of being the unofficial

maintainer of the Rails 2.x-era ñconfig.gemò mechanism, earned after fixing the borked 2.1 series version

to work better with Hobo.

.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 1
© 2011 Barquin International

PREFACE TO THE HOBO 1.3 VERSION FOR RAILS 3

It has been a little over a year since we published the first PDF books ñRapid Rails with Hoboò

and ñHobo at Workò. We are pleased that there have been over 20,000 downloads since that

time.

The current ñRapid Rails 3 with Hoboò combines both ñRapid Rails with Hoboò and ñHobo at

Workò. We felt that having all of the material in one indexed volume would prove more

valuable.

There has been such a dramatic change in the structure of Hobo since version 1.0 we really

should have called it Hobo 3.0! Each major feature of Hobo can now be used independently and

has been re-factored to work seamlessly with Rails 3.

Domizio Demichelis did a fantastic job with the new Hobo Setup Wizard as well the heavy

lifting on almost every new feature in Hobo 1.3. It has been gratifying to see another extremely

talented and seasoned contributor following in the footsteps of Tom Locke, James Garlick,

Bryan Larsen and Matt Jones.

It is also very gratifying to see the self-sustaining Hobo User community and those talented

Hobo-ists who volunteer their time to answer questions and provide insight. If you look at the

member statistics you will see the top five all time posters (at least since we switched to using

Google Groups in June of 2008) include Kevin Porter, Tom Locke, Matt Jones, Bryan Larsen,

and Tiago Franco.

At Barquin International, the last year has been a fruitful one for Hobo. We have four major

mission-critical applications that have Hobo as a critical component. We have been fortunate to

have the skills of Tom Locke and his crew at Artisan to support us, including Bryan Larsen,

Gustav Paul, and Angus Miller, and our internal Barquin Hoboists Venka Ashtakala and Jack

Compton. They have been critical to our success with the National Institute of Food and

Agriculture (NIFA) Applications Portal (http://portal.nifa.usda.gov) and the Leadership

Management Dashboard (LMD), as well as other initiatives that will be revealed later this year.

So, please stop by Hobo Central (http://hobocentral.net) and join the growing community of

developers who are having a great deal of fun while providing their clients with the huge benefits

of a state-of-the art agile development framework!

Owen Dall

Annapolis, Maryland

March 2011

http://portal.nifa.usda.gov/
http://hobocentral.net/

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 2
© 2011 Barquin International

PREFACE TO THE HOBO 1.0 VERSION FOR RAILS 2

What was our goal?

I starting writing this preface almost exactly a year ago, but put it aside while Jeff and I toiled

over iterations of the book outline. While building and rebuilding the outline of what we thought

were the bookôs requirements, we soon realized that it would take much more focus and energy

than we anticipated completing this project.

Our goal seemed simple enough:

ñCreate a full set of rock-solid instructions and tutorials so that even a novice developer can

create, revise, and deploy non-trivial data-rich Web 2.0 applications. The user must have fun

while learning, and develop the confidence to take the next step of diving in to learn more about

Hobo, Rails and the elegant and powerful object-oriented language behind these frameworks -

Ruby.ò

Right. Well, you know how these things go. OK, so we bit off more than we could chew, at least

in the timeframe we envisioned. So instead of three months it took a yearéat least it comes out

synchronized with the release of Hobo 1.0!

So--we hope we have been at least partially successful. We have had a few ñbetaò testers of

early versions that have made it through without serious injury. More recently it has been

reports of minor typos and suggested phrasing enhancements. Letting this simmer for a while

has been a good thing.

I hope you are grateful that we parsed off the last 200+ pages into a more advanced companion

book with the title ñHobo at Workò.

A brief history

The search for a new web development framework began with my frustration with the learning

curve and the lack of agility I experienced with the current open source frameworks at the time.

A major client had stipulated that we were to use a totally open source technology stack. In the

early 2000ôs that meant to us Linux, JBoss, Hibernate, MySQL, and Java web frameworks such

as Struts. We eventually moved ñupò to using Java Server Faces (JSF). The learning curve was

steep for our new programmers who were learning on the job.

This was particularly frustrating to me as I had experience with the ñagileò tools of the 1980ôs

and 1990ôs, which included Revelation and PowerBuilder, client-server technologies that didnôt

manage to survive into the Internet age. With Revelation we could build an application

prototype that included complex business logic while sitting in front of a client. We didnôt call it

Agile Development. We just did it. We built dozens of mission-critical applications and many

shrink-wrapped tools. Things were good. Then they werenôt. The dinosaurs didnôt survive the

meteor that hit with the World Wide Web.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 3
© 2011 Barquin International

So, as the development team lead at one of our major sites as well as the chief systems architect

of our small company, I thought it was my duty to start looking for another solution in earnest.

It was in the middle of 2006 that I had a long discussion with Venka Ashtakala about this new

quest. (Venka and I had survived two unsuccessful framework searches together starting in

1998. The first was as Alpha testers of the PowerBuilder web converter. Our goal was to

migrate a very successful client-server budgeting system used by a large number state and local

governments to the web. That experiment was a disaster at the time, so we dropped it.)

A few days after our initial discussion he emailed me about a relatively new framework called

ñRuby on Railsò that had gotten some good press. He heard of a few guys who vouched for it,

but couldnôt find any ñmission criticalò apps we could use as references. I was intrigued. I did a

search and found the first edition of ñAgile Development with Railsò, and tried it out.

My first simple application worked, but I have to admit it looked very plain and uninspiring to

me. I was a designer and architect, and didnôt want to code HTML and JavaScript. I didnôt want

to go backward. ñI am too old for this!ò was my mantra at the time. I couldnôt understand why

the framework didnôt take care of basic things I had been using for over 20 years. Among other

things, I was looking for a data-driven navigation system, user authentication, and a decent user

interface baked in.

I dropped the search for almost a year. I stumbled on a link on one of the major Oracle sites

about interesting add-ons to Rails, which led to a post by the renowned Ruby evangelist, Peter

Cooper, in January of 2007. Here are two short quotes.

ñYou may have thought Ruby on Rails was enough to get Web applications developed quickly,

but enter Hobo. Hobo makes the process of creating Web applications and prototypes even

quicker. For example, out of the box, with no lines of code written, you get a dummy app with a

user signup, login, and authentication system.

éThere's quite a lot to Hobo, so you'll want to go through its comprehensive official site and

watch the Hobo screen cast to get a real feel for it where a classified ads app is created within

minutes.ò

I watched the screen cast three times. I was blown away. I had finally found someone who got

it. It was Tom Locke.

Following an open source project was something totally new to me. I owned my own software

business for a dozen years. We used proprietary tools that had hefty license fees for each

installation. I couldnôt see the source code. Oracle and Microsoft werenôt giving me the code to

their database servers, applications servers, or WYSIWYG design tools. I paid support and

expected THEM to fix the problems we invariably discovered building our vertical applications

in the 1980ôs and 1990ôs.

The closest I came to the open source world was being a senior member of the Revelation

Roundtable, a board of key developers and integrators for the Revelation and Advanced

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 4
© 2011 Barquin International

Revelation development tools. A few of our products were shrink-wrapped add-ons for other

developers. This gave us clout for recommending priorities for new development and the ability

to get the president on the phone if one of my very high profile customers was having an issue.

So posting to a forum and waiting for an answer to my (probably) stupid question didnôt come

easy to me. This was the thing (I thought) for generation X, not an aging survivor of decades of

software wars.

It was a welcome and pleasant surprise to find supportive, generous, and incredibly talented

people willing to help. Even Tom Locke would answer my questions, patiently. Later I was

lucky enough to spend time with Tom in person on a number of occasions, which increased my

respect for his vision and capabilities.

In Early 2008 an opportunity arose at one of our major clients, The National Institute for Food

and Agriculture (Formerly CSREES), to migrate a legacy app to the web. I invited the CIO,

Michel Desbois (a forward-looking open source advocate) to experience a demo of building an

application using Hobo. My position at NIFA was Chief Systems Architect of the Barquin team,

not one of our senior developers. So Michel was intrigued that I was going to sit with him

without a coder coaching.

That demo led to a small ñproof of conceptò task to build a Topic Classification system for

agriculture research projects using Hobo and Oracle as a back end. Michel took a risk and

started the ball rolling for us with Hobo.

As this project moved forward, and additional Barquin team members became interested in

learning, it became more and more urgent to have a solid resource for training not only

developers, but also our requirements analysts and designers. We were building wireframes

using software (e.g., Axure) that built great documentation. It even generated HTML pages so

you could simulate the page flow of an application.

Unfortunately these became throwaway artifacts, as there was no way of generating a database

driven application. What we needed was a prototyping tool designers could use and then pass on

to developers. Hobo appeared to be the best solution for both prototyping and mission-critical

web development. Here is what I reported in May of 2008 about Barquin Internationalôs

decision to provide some seed money to Hobo:

"This is the first time in over a decade I have been excited about the potential in a new

development framework," explains Owen Dall, Chief Systems Architect for Barquin

International, "Although Hobo is already a brilliant and significant enhancement to Rails,

we are looking forward to the great leap forward we know is comingéò

More recently we have two significant development efforts underway using Hobo that we will

put in production this year. The new Leadership and Management Dashboard (LMD) led by Joe

Barbano, the NIFA Reporting Portal, and the REEport (Research, Education and Economics

Reporting) project lifecycle reporting system under the direction of John Mingee. Dennis

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 5
© 2011 Barquin International

Unglesbee, Director of the NIFA Applications Division, has had overall lead responsibility for

all of these endeavors.

Anyone who thinks government cannot be agile should come on by and have coffee with the

NIFA application development project managers. NIFA has become an innovative ñskunk

worksò that, IMHO, should become a model for public/private collaboration.

A Challenge

How fast could you build an application with the following set of requirements using your

current development tool, and have it running, without touching the database engine?

 Books have been disappearing from your teamôs bookshelves. You have been
asked to quickly develop a web application that will maintain this library and
always know who has what copy of which book.

 Each book title may have any number of copies. Only the administrator, who
will be the first one to log in, can enter or edit book titles and details about each
copy.

 There will be an automatic signup and login capability accessible from the
home page that allows each member of your team to join in, check a book out,
or find out who has it so you can track him or her down in the lunch room.

 There is a built-in text search facility that will allow you to search by book name
or description.

 Basic Application documentation is generated for you automatically so you can
show your team leader what is behind the curtain.

(Now write your estimates down before reading the rest of this page)

OK. Timeôs up. By the time you consolidated your estimates you would already
be up and running with this application using Hobo.

Owen Dall

Annapolis, Maryland

February, 2010

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 6
© 2011 Barquin International

SECTION 1: INTRODUCTION AND INSTALLATION

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 7
© 2011 Barquin International

CHAPTER 1 ï INTRODUCTION

What is Hobo?

By Tom Locke

Hobo is a software framework that radically reduces the effort required to develop database-

driven, interactive web sites and web-based applications. Strictly speaking itôs more of a ñhalf-

frameworkò ð Hobo builds on the amazingly successful Ruby on Rails and thatôs where much

of the functionality comes from. The original motivation for the Hobo project can be summed up

pretty succinctly with a single sentiment: ñDo I really have to code all this stuff up again?".

In other words Hobo is about not re-inventing the wheel. In software-engineer-speak, we call that

code reuse. If you mention that term in a room full of experienced programmers youôll probably

find yourself the recipient of various frowns and sighs; you might even get laughed at. It all

sounds so simple - if youôve done it before just go dig out that code and use it again. The trouble

is, the thing you want to do this time is just a bit different, here and there, from what you did last

time. That innocuous sounding ñjust a bit differentò turns out to be a twelve-headed beast that

eats up 150% of your budget and stomps all over your deadline. Re-use, it turns out, is a very

tough problem. Real programmers know this. Real programmers code it up from scratch.

Except they donôt. Ask any programmer to list the existing software technologies they drew upon

to create their Amazing New Thing and you had better have a lot of time to spare. Modern

programming languages ship with huge class libraries, we rely on databases that have

unthinkable amounts of engineering time invested in them, and our web browsers have been

growing more and more sophisticated for years. Nowadays we also draw upon very sophisticated

online services, for example web based mapping and geo-location, and we add features to our

products that would otherwise have been far beyond our reach.

So it turns out the quest for re-use has been a great success after allðwe just have to change our

perspective slightly, and look at the infrastructure our application is built on rather than the

application code itself. This is probably because our attitude to infrastructure is differentðyou

like it or lump it. If your mapping service doesnôt provide a certain feature, you just do without.

You canôt dream of coding up your own mapping service, and some maps is better than no maps.

Weôve traded flexibility for reach, and boy is it a good trade.

Programmers get to stand on the shoulders of giants. Small teams with relatively tiny budgets

can now successfully take on projects that would have been unthinkable a decade ago. How far

can this trend continue? Can team sizes be reduced to one? Can timelines be measured in days or

weeks instead of months and years? The answer is yes, if you are willing to trade flexibility for

reach.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 8
© 2011 Barquin International

In part, this is what Hobo is about. If youôre prepared for your app to sit firmly inside the box of

Hoboôs ñstandard database appò, you can be up and running with startlingly little effort. So little,

in fact, that you can just about squeeze by without even knowing how to program. But thatôs

only one part of Hobo. The other part comes from the fact that nobody likes to be boxed in. What

if I am a programmer, or I have access to programmers? What if I donôt mind spending more

time on this project?

We would like this ñflexibility for reachò tradeoff to be a bit more fluid. Can I buy back some

flexibility by adding more programming skills and more time? In the past this has been a huge

problem. Lots of products have made it incredibly easy to create a simple database app, but

adding flexibility has been an all-or-nothing proposition. You could either stick with the out-of-

the-box application, or jump off the ñscripting extensionsò cliff, at which point things get awfully

similar to coding the app from scratch.

This, we believe, is where Hobo is a real step forward. Hobo is all about choosing the balance

between flexibility and reach that works for your particular project. You can start with the out-

of-the box solution and have something up and running in your first afternoon. You can then

identify the things youôd like to tweak and decide if you want to invest programming effort in

them. You can do this, bit by bit, on any aspect of your application, from tiny touches to the

user-interface, all the way up to full-blown custom features.

In the long run, and weôre very much still on the journey, we hope you will never again have to

say ñDo I really have to code all this up again?ò, because youôll only ever be coding the things

that are unique to this particular project. To be honest thatôs probably a bit of a utopian dream,

and some readers will probably be scoffing at this pointðyouôve heard it all before. But if we

can make some progress, any progress in that direction, thatôs got to be good, right? Well we

think weôve made a ton of progress already, and thereôs plenty more to come!

Background

A brief look at the history leading up to Hobo might be helpful to put things in context. Weôll

start back in ancient times ð 2004. At that time the web development scene was hugely

dominated by Java with its ñenterpriseò frameworks like EJB, Struts and Hibernate. It would be

easy, at this point, to launch into a lengthy rant about over-engineered technology that was

designed by committee and is painful to program with. But that has all been done before. Suffice

it to say that many programmers felt that they were spending way too much time writing

repetitive ñboilerplateò code and the dreaded XML configuration files, instead of focusing on the

really creative stuff that was unique to their project. Not fun and definitely not efficient.

One fellow managed to voice his concerns much more loudly than anyone else, by showing a

better way. In 2004 David Heinemeier Hansson released a different kind of framework for

building web apps, using a then little-known language called Ruby. A video was released in

which Hansson created a working database-driven Weblog application from scratch in less than

15 minutes. That video was impressive enough to rapidly circulate the globe, and before anyone

really even knew what it was, the Ruby on Rails framework was famous.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 9
© 2011 Barquin International

Like most technologies that grow rapidly on a wave of hype, Rails (as it is known for short) was

often dismissed as a passing fad. Five years later the record shows otherwise. Rails is now

supported by all of the major software companies and powers many household-name websites.

So what was, and is, so special about Ruby on Rails? There are a thousand tiny answers to that

question, but they all pretty much come down to one overarching attitude. Rails is, to quote its

creator, opinionated software. The basic idea is very simple: instead of starting with a blank slate

and requiring the programmer to specify every little detail, Rails starts with a strong set of

opinions about how things should work, conventions which ñjust workò 95% of the time.

ñConvention over Configurationò is the mantra. If you find yourself in the 5% case where these

conventions donôt fit, you can usually code your way out of trouble with a bit of extra effort. For

the other 95% Rails just saved you a ton of boring, repetitive work.

In the previous section we talked about trading flexibility for reach. Convention over

configuration is pretty much the same deal: donôt require the programmer to make every little

choice; make some assumptions and move swiftly on. The thinking behind Hobo is very much

inspired by Rails. Weôre finding out just how far the idea of convention over configuration can

be pushed. For my part, the experience of learning Rails was a real eye-opener, but I

immediately wanted more.

I found that certain aspects of Rails development were a real joy. The ñconventionsòðthe stuff

that Rails did for youðwere so strong that you were literally just saying what you wanted, and

Rails would just make it happen. We call this ñdeclarative programmingò. Instead of spelling out

the details of a process that would achieve the desired result, you just declare what you want, and

the framework makes it happen: ñwhatò not ñhowò.

The trouble was that Rails achieved these heights in some areas, but not all. In particular, when it

came to building the user interface to your application, you found yourself having to spell things

out the long way.

It turned out this was very much a conscious decision in the design of Ruby on Rails. David

Heinemeier Hansson had seen too many projects bitten by what he saw as the ñmirageò of high-

level components:

I worked in a J2EE shop for seven months that tried to pursue the component pipe dream

for community tools with chats, user management, forums, calendars. The whole

shebang. And I saw how poorly it adapted to different needs of the particular projects.

On the surface, the dream of components sounds great and cursory overviews of new

projects also appear to be ña perfect fitò. But they never are. Reuse is hard.

Parameterized reuse is even harder. And in the end, youôre left with all the complexity of

a Swiss army knife that does everything for no one at great cost and pain.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 10
© 2011 Barquin International

I must say I find it easy to agree with this perspective, and many projects did seem, in hindsight,

to have been chasing a mirage. But itôs also a hugely dissatisfying position. Surely we donôt have

to resign ourselves to re-inventing the wheel forever? So while the incredibly talented team

behind Rails has been making the foundations stronger, weôve been trying to find out how high

we can build on top of those foundations. Rather than a problem, we see a question ð why do

these ideas work so well in some parts of Rails but not others? What new ideas do we need to be

able to take convention over configuration and declarative programming to higher and higher

levels? Over the last couple of years weôve come up with some pretty interesting answers to

those questions.

In fact one answer seems to be standing out as the key. Itôs been hinted at already, but it will

become clearer in the next section when we compare Hobo to some other seemingly similar

projects.

The Difference

There are a number of projects out there that bear an external resemblance to Hobo. To name a

few, in the Rails world we have Active Scaffold and Streamlined, and the Python language has

Django, a web framework with some similar features.

There is some genuine overlap between these projects and Hobo. All of them (including Hobo)

can be used to create so called ñadmin interfacesò. That is, they are very good at providing a

straightforward user-interface for creating, editing and deleting records in our various database

tables. The idea is that the site administrator, who has a good understanding of how everything

works, does not need a custom crafted user-interface in order to perform all manner of behind-

the-scenes maintenance tasks. A simple example might be editing the price of a product in a

store. In other words, the admin interface is a known quantity: they are all largely the same.

Active Scaffold, Streamlined, Django and Hobo can all provide working admin sites like these

with very little or even no programming effort. This is extremely useful, but Hobo goes much

further. The big difference is that the benefits Hobo provides apply to the whole application, not

just the admin interface, and this difference comes from Hoboôs approach to customization.

Broadly speaking, these ñadmin site builderò projects provide you a very complete and useful

out-of-the-box solution. There will be a great number of options that can be tweaked and

changed, but these will only refine rather than reinvent the end result. Once youôve seen one of

these admin-sites, youôve pretty much seen them all. Thatôs exactly why these tools are used for

admin sites - it generally just doesnôt matter if your admin site is very alike any other. The same

is far from true for the user-facing pieces of your applicationðthose need to be carefully crafted

to suit the needs of your users.

Hobo has a very different approach. Instead of providing options, Hobo provides a powerful

parameterization mechanism that lets you reach in and completely replace any piece of the

generated user-interface, from the tiny to the large.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 11
© 2011 Barquin International

This difference leads to something very significant: it gets you out of making a difficult all-or-

nothing decision. An admin site builder does one thing well, but stops there. For every piece of

your site you need to decide: admin interface or custom code? With Hobo you can start off using

the out-of-the-box UI as a rough prototype, and then gradually replace as much or as little as you

need in order to get the exact user experience you are after.

Once again we find ourselves back at the original idea: making a tradeoff between flexibility and

reach. The crucial difference with Hobo, is that you get to make this trade-off in a very fine-

grained way. Instead of all-or-nothing decisions (admin-site-builder vs. custom-code), you make

a stream of tiny decisions. Should I stick with Hoboôs automatically generated form? Sidebar?

Button? How long would it take me to replace that with something better? Is it worth it?

There is a wide spectrum of possibilities, ranging from a complete out-of-the-box solution at one

end to a fully tailored application at the other. Hobo lets you pick any point on this spectrum

according to whatever makes sense right now. Not only that but you donôt have to pick a point

for the app as a whole. You get to make this decision for each page, and even each small piece of

each page.

The previous section posed the question: ñhow can the ideas of declarative programming be

taken to higher and higher levels?ò. We mentioned before that one particular answer to this

question has stood out as crucial: it is the approach we have taken to customization. Itôs not what

your components can do, itôs how they can be changed that matters. This makes senseðsoftware

development is a creative activity. Developers need to take what youôre giving them and do

something new with it.

It is this difficulty of customization that lies at the heart of concerns with high-level components:

David Heinemeier Hansson again:

éhigh-level components are a mirage: By the time they become interesting, their fitting

will require more work than creating something from scratch.

The typical story goes like this: you need to build something that ñsurely someone must have

done before?ò; you find a likely candidate - maybe an open-source plugin or an application that

you think you can integrate; then as you start the work of adjusting it to your needs it slowly

becomes apparent that itôs going to be far harder than you had anticipated. Eventually you end up

wishing you had built the thing yourself in the first place.

To the optimistic however, a problem is just an opportunity waiting to be taken. Weôre hitting a

limit on the size of the components we can buildðtoo big and the effort to tailor them makes it

counterproductive. Turn that around and you get this: if you can find a way to make

customization easier, then you can build bigger components. If itôs the ñfittingò thatôs the

problem, letôs make them easier to fit! Thatôs exactly what weôre doing.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 12
© 2011 Barquin International

The Future

Bigger library

Obviously the whole point in discovering the secrets of how to build high-level components, is

that you want to build some high level components! In other words there are two distinct aspects

to the Hobo project: getting the underlying technology right, and then building some cool stuff

with it. Hobo 1.3 will ship with a decent library of useful ñbuilding blocksò to get your app up

and running quickly, but thereôs so much more weôd like to see. This is where the magic of open-

source needs to come into play. The better Hobo gets, the more developers will want to jump on

board, and the bigger the library will grow.

Although the underlying framework is the most technically challenging part of the project, in the

long run thereôs much more work to be done in the libraries. And writing the code is just part of

the story. All these contributions will need to be documented and catalogued too.

Weôve started putting the infrastructure in place with ñThe Hobo Cookbookò website

(http://cookbook.hobocentral.net) - a central home for both the ñofficialò and user-contributed

documentation.

Performance improvements

It would be remiss not to mention that all these wonderful productivity gains do come at a cost -

a Hobo application does have an extra performance overhead compared to a ñnormalò Rails

application. Experience has shown itôs not really a big problem - many people are using Hobo to

prototype, or to create a very niche application for a small audience. In these cases the

performance overhead just doesnôt matter. If you do have a more serious application that may

need to scale, there are well known techniques to apply, such as prudent use of caching.

The argument is pretty much the same as that told by early Rails coders to their Java based

critics. Itôs much better to save a ton of development time, even if it costs you some of your raw

performance. The time saved can be used to work on performance improvements in the

architecture of the app. You typically end up with an app thatôs actually faster than something

built in a lower-level, ñfasterò language.

Another way to look at itðit was about four or five years ago that Rails was getting a lot of

pushback about performance. In those four or five years, Mooreôs Law has made our servers

somewhere between five and ten times faster. If Rails was fast enough in 2005 (it was), Hobo is

certainly fast enough today.

Having said all that, itôs always nice to give people more performance out-of-the-box and

postpone the day that they have to resort to app-specific efforts. Just as Rails has focused a lot on

performance in the last couple of years, this is definitely an area that we will focus on in the

future.

http://cookbook.hobocentral.net/

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 13
© 2011 Barquin International

Less magic

One of the most common criticisms leveled against Hobo is that it is ñtoo magicò. This tends to

come from very experienced developers who like to know exactly how everything is working.

Because Hobo gives you so much out-of-the-box, itôs inevitable that youôll be scratching your

head a bit about where it all comes from in the early days. Fortunately this is mostly just a matter

of the learning curve. Once youôve oriented yourself, itôs pretty easy to understand where the

various features come from, and hence where to look when you need to customize.

As Hobo has developed, weôve definitely learnt how important it is to make things as clear and

transparent as we can. The changes from Hobo 0.7 to 0.8 removed a great deal of hard to

understand ñmagicalò code. This is definitely a trend that will continue. Weôre very confident

that future versions will be able to do even more for you, while at the same time being easier to

understand. Itôs a challengeðwe like challenges!

Even higher level

One of the really interesting things weôve learnt through releasing Hobo as open source, has been

that it has a very strong appeal to beginners. It is very common for a post to the ñhobo usersò

discussion group to start ñI am new to web programmingò or ñThis is my first attempt to create a

web appò. It seems that, with Hobo, people can see that a finished result is within their reach.

That is a powerful motivator.

Now that weôve seen that appeal, itôs really interesting to find out how far we can push it. Weôve

already seen simple Hobo applications created by people that donôt really know computer

programming at all. Right now these people are really rather limited, but perhaps they can go

further.

Hobo has ended up serving two very different audiences: experienced programmers looking for

higher productivity, and beginners looking to achieve things they otherwise couldnôt. Trying to

serve both audiences might sound like a mistake, but in fact it captures what Hobo is all about.

Our challenge is to allow the programmer to choose his or her own position on a continuous

spectrum from ñincredibly easyò to ñperfectly customizedò.

Hopefully this introduction has whetted your appetite and youôre keen to roll up your sleeves and

find out how it all works. While this section has been a bit on the philosophical side, the rest of

the book is eminently practical. From now on weôll dispense with all the highbrow pontificating

and teach you how to make stuff. Enjoy!

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 14
© 2011 Barquin International

Fundamentals

The Hobo developers have taken the DRY (Donôt Repeat Yourself) paradigm to a new level by

identifying repetitive architectural patterns in data-driven web sites and particularly within Rails

applications.

 Rapid implementation of dynamic AJAX interfaces in your application with no extra
programming. Switchable themes. Customize and tweak your application structure
and layout to meet any design goals.

 Powerful mark-up language, DRYML, combines rapid development with ultimate
design flexibility.

The DRY paradigm is all about finding the right level of abstraction for the building blocks of an

application in order to reduce cookie-cutter repetitive programming.

Rails starts with a Model-View-Controller (MVC) architecture built with Ruby code, using the

metaprogramming power that Ruby provides.

Hobo takes this paradigm further and it does it in two directions. It provides rapid prototyping

with modules that provide an integrated user login and permissions system, automated page

generation, automated routing, built-in style sheets, and an automated database migration and

synchronization system. Hobo also provides a powerful markup language called DRYML that

provides an almost limitless method for building custom tags at ever-higher levels of abstraction.

Sometimes these patterns are at a very high level such as the need for a user login capability and

sometimes they are at a lower level such the requirement to grab a set of records for display.

The Hobo framework philosophy is that many of the features of a data-driven site should be able

to be declared and need no other coding, at least for the first set of iterations.

Letôs take a database query as an example. The developers of Rails realized that many queries

had similar structures and therefore there should be no need to code complex SQL queries. Rails

implements find methods to deal with this challenge. Butðin the view templateðyou still need

to write the code to loop through the records when you need to display them.

The Hobo view is that this is a ubiquitous repetitive pattern that should be addressed. So Hobo

lets you just declare that you want to display a collection of records in a single command.

As we have mentioned many times before, Hobo provides a new language called DRYML

(Donôt Repeat Yourself Markup Language) to develop menus, views, forms, and page

navigation. The components of DRYML, as you would expect, are tags. Hobo comes with a

library of predefined DRYML tags called the Rapid Tag Library. This library is used to render

the default menus, pages, and forms you have used in the tutorials.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 15
© 2011 Barquin International

Levels of Abstraction

As we discussed above, finding the right level of abstraction in implementing coding constructs

is the key to programming productivity and application maintainability. But anyone who has ever

coded knows that programming is a messy business. Sometimes it is just easier to code at a low

level of abstraction. This is the dominant way of developing applications today. It is simpler not

to create reusable components or snippets because something always seems to need changing.

You think you will waste more time fixing your components than just starting over.

The approach that Rails takes, and Hobo even more so, is to have code that lets multiple levels of

abstractions coexist in the code. This is potentially the best of both approaches.

Build higher and higher levels of abstraction in your tool set but maintain the ability to code at a

detail level for development flexibility.

Wherever possible, Hobo provides additional capabilities over Rails for declaring what you want

rather than forcing you to write procedural code. It is therefore important to understand what is

going on procedurally behind the scenes in both Rails and Hobo so you know what to do.

In this chapter we will emphasize which component--model, view or controller--is doing what,

and when it is doing it. We will also emphasize what the various Hobo constructs are doing and

how within the architecture of Rails.

We are going to go through the Hobo approach at a couple of levels but first we will list them

and give a brief introduction.

Now we are going to approach the major topics at a shallow level first and then circle back and

go in deeper after we get a few things out of the way first.

Rails and Hobo

Hobo is a set of Rails plug-ins, which means that Hobo adds additional custom code to Rails, and

coexists with Rails. So, essentially a Hobo application is a Rails application with additional

capabilities. However, these additional capabilities are substantial, and can be conceptualized

into two categories:

1. Operational (ñRun Timeò) Enhancements

2. Developer Tool Enhancements

Operational Enhancements. Take a look at the data flow for a typical operating application

built with a Model-View-Controller (MVC) framework:

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 16
© 2011 Barquin International

Figure 1: Data flow for a typical Application using a MVC framework

Now letôs look at how Rails and Hobo fit into the MVC framework:

Figure 2: Data flow for a Rails application

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 17
© 2011 Barquin International

Figure 3: Data flow for a Hobo application

Here are a few talking points:

 The Hobo Model Controller takes the place of the Action Controller in Rails.

 The Hobo Model Controller has access to information from both Hobo Permissions and

Hobo Lifecycles that allow it to decide what should be displayed and for whom.

 Hobo Rapid pages are rendered using DRYML, which is passed to the DRYML

ñprocessorò that translates more declarative DRYML into standard Rails eRB (embedded

Ruby) that is then rendered with Action View in Rails.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 18
© 2011 Barquin International

Hobo Enhancement Summary

Fields

A big difference between Hobo and Rails is that in Hobo fields are declared in the model,

whereas in Rails they are declared in the migrations. In our opinion it is more intuitive and DRY

to maintain all of the model code in one place, creating or changing the database design by

editing the model, letting Hobo build the migration code necessary to make any required

changes. You can look in one place to see everything about a model. You donôt need to jump

to the schema.rb file.

The Hobo ñresourceò generator creates models, controllers, and views:

> hobo generate r esource [parameters]

Any changes to field definitions or associations in the model can be propagated throughout the

application with the Hobo ñmigrationò generator:

> hobo generate migration [parameters]

There is no need to edit the migration file. The migration generator handles this for you.

If you only need to create a model without other resources, use the Hobo model generator:

> hobo generate model [parameters]

Indexes

This is one of the newest additions to Hobo thanks to Matt Jones. This feature provides for

automatic field generation for the foreign keys of related models, and an easy-to-use declarative

syntax to specified single and multi-part keys with a model definition.

Validations

As we have discussed elsewhere in the book, Hobo provides some useful in-line shortcuts for the

simplest validations that Rails does not provide. See in red below:

Fields do

 name :string, :required, :unique, :length => 32

end

Use standard rails validations outside the fieldsédo block.

This works the same as in Rails so we will not add anything new at this point.

CHAPTER 1 - INTRODUCTION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 19
© 2011 Barquin International

Views

Views take the most time to develop in any application and Hobo provides more tools here than

in the other two modules to meet that challenge. In fact, it provides an entire language to use to

develop view templates (a Rails web page).

Hobo views are developed entirely differently than in Rails. Once you define your models and

controllers, Hobo is capable of automatically generating an entire set of views on the fly. This

means that at the beginning of your development process you do not have to code a view

template at all. Hobo automatically creates them whenever the user requests that data be

rendered.

DRYML Tags - Hobo constructs view templates using Hoboôs mark-up language, called Donôt

Repeat Yourself Markup Language. The tags are reusable components that perform specific

processes defined in Ruby.

You build DRYML tags using a definition language and you use the tags to build data-driven

view templates in an XML-like syntax. You can create your own tags and build tags from other

tags. Hobo comes with its own library of fundamental tags called the Rapid Library.

For those of you with a Rails background, you can think of these as similar to Rails "helpers",

but they are used with an easier XML syntax rather than with [Ruby embedded in the templates.]

Rapid Tag Library . This library is a set of tags that deal with all aspects of view template

specification. It includes tags for links, forms, input controls, navigation, logic and much more.

They are DRYML tags in that they are defined with the DRYML definition language. Many

rapid tags call other Rapid tags implicitly. For example, you may never see a Rapid <input>

called explicitly in the auto-generated tags described below.

Rapid Generator. This generator is a real time generator as opposed to the code generators we

usually talk about in Rails development. Rapid creates a set of auto-generated tags that are

defined by model fields and model relationships. Rapid uses these auto-generated tags to render

individual view templates.

CHAPTER 2 - INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 20
© 2011 Barquin International

CHAPTER 2 ï INSTALLATION

Note: This Book is for Hobo version 1.3 which is only compatible with Rails version 3. If

you are using Rails 2, please use the previously published book, ñRapid Rails with Hobo.ò

Introductory Concepts and Comments

To encourage the widest audience possible, the following instructions are tailored for Windows,

which is still the most commonly used operating system in the enterprise. It has been our

experience that Mac and Linux users can translate much more easily to Windows vernacular than

Windows users to Mac OS X or Linux.

Although we include detailed instructions for configuring MySQL and Oracle databases with

Hobo, we encourage you to start the tutorials using the lightweight and self-configuring database

engine, SQLite3, which is the default engine used by Hobo and Rails when in development

mode. This allows you to focus on learning Hobo, not configuring a database.

Most books and online tutorials on Ruby and Rails are tailored to Mac users, and pay lip service

to Windows, assuming the reader is already facile with web development tools and uses the

MacBook Pro as the ñweapon of choiceò. This book also assumes that many of you are trying out

Hobo, Ruby, and Rails for the first time and that a large percentage will also be using either

Windows XP, Vista, or Windows 7 on a day-to-day basis. We donôt want that minor factor to

limit your development enjoyment. Mac and Linux users may also easily read this book, as we

have provided the necessary references for installation instructions in these environments.

So--get your favorite web browser fired up, have a good cup of coffee handy, and follow the

instructions below.

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 21
© 2011 Barquin International

Installing Ruby, Rails and Hobo

 If you already have Ruby and Rails version 3 installed, you can skip to step #3.

 If you have a Mac with OS X Snow Leopard, Ruby 1.8.7 and Rails 2.3.5 are pre-

installed. You can also skip to step #3

 If you are using a PC with Linux, see this link for installing Ruby and Rails on Ubuntu

and Debian Linux, and then skip to step #3:

 http://wiki.rubyonrails.org/getting-started/installation/linux-ubuntu

 If you are using a PC with Windows XP or Windows 7, and are new to Ruby and Rails,

Start with Step #1 below:

Step 1. Download the ñRails Installerò Kit from http://railsinstaller.org:

Figure 4: Download Site for the Rails Installer

Step 2. Double-click on the file r ailsinstaller - 1.0.4 .exe (as of February 14, 2011) to

run the installer.

http://wiki.rubyonrails.org/getting-started/installation/linux-ubuntu
http://railsinstaller.org/

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 22
© 2011 Barquin International

The following will be installed for you through the visual wizard:

 Ruby 1.8.7-p330

 Rails 3.0.3

 Git 1.7.3.1

 SQLite 3.7.3

 DevKit

(Again, these versions will change over time.)

Figure 5: Rails Installer Setup Wizard

Pressing the ñNextò button will start the installation. You will be prompted at each step to

provide configuration information.

The first configuration you will be prompted for is an installation directory. A default one is

provided to you, but in this tutorial we chose the option to install all in the folder:

C: \ Rails3

http://www.ruby-lang.org/
http://rubyonrails.org/
http://git-scm.com/
http://www.sqlite.org/
https://github.com/oneclick/rubyinstaller/wiki/Development-Kit

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 23
© 2011 Barquin International

Figure 6: Choose the Installation Directory

After the installation is complete, you will see a new menu option called ñRailsInstallerò and

four sub-menus similar to the following:

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 24
© 2011 Barquin International

If you select the sub-menu option ñCommand Prompt with Ruby and Railsò you will see a

command window that appears as follows:

Note that a default ñSitesò folder was created for you, and that there is even a sample Rails 3

application included:

Figure 7: Rails Installer Sample Application Folder

Selecting the Interactive Ruby sub-menu brings up a console similar to the following:

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 25
© 2011 Barquin International

For more information, please check out the following link:

http://www.ruby-lang.org/en/documentation/quickstart/

Selecting the RubyGems Documentation Server sub-menu option will start a web server on

port 8808 that provides hyperlinked information about each gem you have installed:

For more information, please check out the following link:

http://docs.rubygems.org/

http://www.ruby-lang.org/en/documentation/quickstart/
http://docs.rubygems.org/

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 26
© 2011 Barquin International

Click on the ñCommand Prompt with Ruby and Railsò and type in the following command:

C: \ Sites> gem env

The ñgem envò (gem environment) provides information that will later be useful for debugging.

Now type the ñgem listò command:

C: \ Sites> gem list

The ñgem listò command provides information about which ruby gems (modules) are installed

and what versions are available.

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 27
© 2011 Barquin International

Figure 8: List of Ruby Gems installed by the Rails Installer

Now test to see the SQLite3 is available. From the command line type ñsqlite3ò:

Figure 9: Testing SQLite3

For a nice introduction to the use of SQLite3, access the following link:

http://www.sqlite.org/quickstart.html

http://www.sqlite.org/quickstart.html

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 28
© 2011 Barquin International

Note that the Rails Installer comes with a sample application in the Sites/sample directory:

Figure 10: The Sample Rails 3 app included by Rails Installer

Step 3. Install Hobo.

Type the following command at the command prompt:

C: \ Sites > gem install hobo - v 1.3.0 .pre2 6 -- pre

Note : In the screen shots captured here we used a recent pre-release version of Hobo.
Notice we were required to use the ñðpreò command option to install it.

When Hobo 1.3.0 is officially released, the installation command will be:

C: \ Sites> gem install hobo - v 1.3.0

Check your installation by using the ñgem listò command to show all Ruby gems that have been

installed:

C: \ Sites> gem list

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 29
© 2011 Barquin International

Figure 11: Sample console output from the "gem list" command after installing Hobo

Note: In the example above, 3.0.4 was installed by Hobo 1.3.0, as Rails 3.0.4 was defined as

a dependency. This may differ over time.

If you find the need to start completely fresh, select the Uninstall RailsInstaller sub-menu

option.

If you did not use the RailsInstaller package, you will need to install the Sqllite3 Ruby gem

manually using the command line ñgem install SQLite3ò

CHAPTER 2 ï INSTALLATION
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 30
© 2011 Barquin International

Step 4. Choose and configure a text editor (optional)

You can work through the tutorials in this book using Textpad or your favorite editor. However,

For years TextMate (http://macromates.com/) for the Mac has been the most popular light-

weight editor for Ruby and Rails, and offers many productivity features. There is an inexpensive

ñcloneò for Windows called ñEò that is very good facsimile of TextMate. You can download a

30-day evaluation version from http://www.e-texteditor.com/:

Also take a look at two popular full Integrated Development environments you might find useful:

http://www.aptana.com/products/radrails

http://netbeans.org/features/ruby/index.html

Now you are ready to start using Hobo with the default database engine for Rails and Hoboð

SQLite.

Skip to Chapter 3 (Introductory Tutorials) unless you prefer to use MySQL or Oracle.

Instructions for installation of these database engines are next.

http://macromates.com/
http://www.e-texteditor.com/
http://www.aptana.com/products/radrails
http://netbeans.org/features/ruby/index.html

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 31
© 2011 Barquin International

Using MySQL with Hobo

Step 1: Download and install MySQL

For Mac OS X user, please see the following URL:

http://dev.mysql.com/doc/mysql-macosx-excerpt/5.0/en/mac-os-x-installation.html

 For Linux users:

http://dev.mysql.com/doc/refman/5.0/en/linux-rpm.html

For Windows users:

http://dev.mysql.com/downloads/mysql/#downloads

Although the Community Server is free, you will need to create an account before you

download. After creating an account, you will be directed to the download page:

Figure 13: Download site for MySQL

http://dev.mysql.com/doc/mysql-macosx-excerpt/5.0/en/mac-os-x-installation.html
http://dev.mysql.com/doc/refman/5.0/en/linux-rpm.html
http://dev.mysql.com/downloads/mysql/#downloads

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 32
© 2011 Barquin International

Click on one of the mirror sites to begin the download. Then click the ñRunò button when

prompted to begin the installation:

Choose the ñCustomò option when prompted:

Figure 15: Choose the ñCustomò setup type

Figure 14: Using the downloaded .msi file to install MySQL on Windows

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 33
© 2011 Barquin International

Next choose the locations for the server code and data files. Note the default location in

Windows is:

C: \ Program Files \ MySQL\ MySQL Server 5.5 \

We suggest a directory path that is more succinct:

Figure 16: Specify the destination folder "C: \MySQL" for the server software

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 34
© 2011 Barquin International

Specify the location of the data files used by MySQL databases:

Figure 17: Specify the destination folder "C:\MySQL\data" to hold MySQL data

Click ñOKò to continue:

Then Click ñNextò to launch the MySQL Instance Configuration Wizard:

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 35
© 2011 Barquin International

Figure 18: The MySQL Instance Configuration Wizard

Now click ñFinishò:

The next step is to choose instance configuration option. We recommend choosing the

ñStandard Configurationò option.

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 36
© 2011 Barquin International

Click ñNextò to obtain further configuration options. Select both ñInstall As Windows Serviceò

and ñInclude Bin Directory in Windows PATHò:

To make the application creation process for MySQL similar to using SQLite, un-click the

default checkbox for ñModify Security Settings.ò (This will remove the need to provide the

MySQL ñrootò user password when using the Hobo setup wizard:

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 37
© 2011 Barquin International

Click ñNextò to continue. A status window similar to the following will be displayed:

Click ñFinishò to complete the installation.

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 38
© 2011 Barquin International

You should now see a new ñMySQLò menu item in, from which you can launch the MySQL

Command Line Client:

The Command Line Client will appear similar to the following:

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 39
© 2011 Barquin International

Because we opted to use the default MySQL security settings in our installation (no password

requirement for the ñrootò user), simply press [Enter] when prompted for a password to access

the MySQL command prompt:

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 40
© 2011 Barquin International

Step 2: Install the Ruby Gem for MySQL 5.5

The next step is to install the following Ruby gem for connecting to MySQL 5.5:

C: \ Sites \ tutorials> gem install mysql2 - v 0.2.7 -- ' -- with - mysql -

l ib=" C; \ MySQL\ include"'

If you installed MySQL in a different location you may have to adjust the previous command to

reflect the appropriate location in your system.

You may run into the issue in Windows systems with having the ñlibmysql.dllò file in a path that

the mysql2 Ruby gem can access:

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 41
© 2011 Barquin International

 You will find this DLL in the following MySQL directory:

Copy this file and place it in the Ruby ñbinò directory:

CHAPTER 2 ï INSTALLATION Using MySQL with Hobo
__

ñRapid Rails 3 with Hoboò BETA-6: 2011-05-18 Page 42
© 2011 Barquin International

Step 3: Generate a Hobo MySQL Application from the Command Line

Now you can generate a Hobo MySQL app using the following command:

C: \ Sites \ tutorials> hobo new one_table -- setup ïd mysql

This will create the ñone_tableò application and run the migrations necessary for the default

ñuserò Hobo user model.

Now edit the database.yml file to see what was created automatically:

Figure 19: The automatically created database.yml file

Notice it is pre-filled with the proper parameter structure for MySQL.

